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ABSTRACT

Detecting tiny objects (e.g., less than 20 × 20 pixels) in
large-scale images is an important yet open problem. Modern
CNN-based detectors are challenged by the scale mismatch
between the dataset for network pre-training and the target
dataset for detector training. In this paper, we investigate the
scale alignment between pre-training and target datasets, and
propose a new refined Scale Match method (termed SM+)
for tiny person detection. SM+ improves the scale match
from image level to instance level, and effectively promotes
the similarity between pre-training and target dataset. More-
over, considering SM+ possibly destroys the image structure,
a new probabilistic structure inpainting (PSI) method is pro-
posed for the background processing. Experiments conducted
across various detectors show that SM+ noticeably improves
the performance on TinyPerson, and outperforms the state-
of-the-art detectors with a significant margin.

Index Terms— tiny object detection, pre-training strat-
egy

1. INTRODUCTION

Person detection is an important topic in the computer vision
area. It has wide applications including surveillance [1][2],
driving assistance [3] and maritime quick rescue [4], etc. The
research of detectors [5][6][7][8][9] has achieved significant
progress with the rapid development of data-driven deep con-
volutional neural networks (CNNs). However, the detectors
perform poorly when detecting tiny objects with few pixels
(e.g., less than 20× 20 pixels), such as traffic signs [10], per-
sons in aerial images [4], etc.

To better exploit the CNN-based detectors, a large num-
ber of person datasets [11][12][13] for detection with human
manual annotations have been proposed and made publicly
available. However, datasets for specific object detection,
such as tiny person detection [4], are not as large as other
counterparts [14][12], due to the cost of collecting and anno-
tating the data. With the insufficient data for a specific ap-
plication, an alternative way is to pre-train a model on the
extra-large datasets (e.g., ImageNet [14], COCO [12]), and
then fine-tune the model on a task-specific dataset.

The corresponding author is Zhenjun Han.

Fig. 1. The illustration of the difference between Image-
level SM and Instance-level SM. While SM only considers the
whole image, SM+ focuses on every instance. The instance-
level approach achieves scale match in a finer level, which
mainly consists of four steps: (1) Separation, (2) Instance pro-
cessing, (3) Background processing, and (4) Combination.

However, a new question arises: Could we take better
advantage of existing large datasets for a task-specific appli-
cation, particularly when object sizes significantly differ be-
tween the datasets? SM algorithm[4], Random Scale Match
(RSM) and Monotone Scale Match (MSM), gave simple yet
effective ways. With a sampled scale factor, the SM algorithm
directly resizes the images and aligns the scale distribution of
pre-training dataset to that of the target dataset. The SM al-
gorithm, with image-level scaling, is merely a simple approx-
imation for scale match by simply regarding the average size
of all objects in an image as the size of the image, where there
may be many labeled objects with multi-scales.

In this paper, we propose a newly refined SM method
(SM+), in which we transform the scale distribution of pre-
training dataset by instance-level scaling instead of resizing
the whole image. Intuitively, compared with the vanilla SM
algorithm, SM+ is a finer-scale scaling and alleviates the un-
certainty and inaccuracy caused by the approximation intro-
duced in the SM algorithm. The differences between SM and
SM+ are illustrated in Fig. 1. SM+ algorithm separates the
image into two parts: the annotated instances and their back-
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ground. The instances are utilized for the instance-level scale
match, while the images are destroyed by some instance-
shaped holes (background). However, the traditional method
[15] blurs the images by direct inpainting the holes and gen-
erates some unreal images, leading to the performance drop
of the pre-trained model. To solve this problem, a probabilis-
tic structure inpainting (PSI) method is further proposed to
dynamically inpaint the images by suppressing the image blur
and preserving context consistency around the holes. Com-
pared with state-of-the-art detectors on TinyPerson, SM+
algorithm leads to significant performance improvement in
AP. The main contributions of our work include:

1. We comprehensively analyze the scale information of
TinyPerson, and propose a new refined scale match method,
dubbed as SM+, which achieves better scale distribution
alignment by finer-scale scaling.

2. We propose the probabilistic structure inpainting for
the SM+ algorithm. PSI can effectively inpaint the images.

3. The proposed SM+ algorithm improves the detection
performance over the state-of-the-art detectors with a large
margin. Codes will be available upon acceptance.

2. METHODOLOGY

2.1. Scale Match
We define the object size as the square root of its area:
s(Gij) =

√
wijhij where Gij denotes the j-th bounding box

of i-th image Ii, and wij , hij are the width and height of the
bounding box, respectively.

Given an extra dataset E where the probability density
function of object size s is Psize(s;E) and a target dataset
D where the probability density function is Psize(s;D), our
goal is to apply a scale transformation T on E, such that their
probability distributions of object size can be well matched.
This is corresponding to,

Psize(s;T (E)) ≈ Psize(s;D). (1)

Image-level method leaves lots of room for improvement. To
this end, we propose the refined scale match (SM+), which
focuses on instance-level scale match and achieves more de-
sirable results than image-level match [4].

2.2. SM+: Refined Scale Match
The whole procedure is shown in Fig. 1. In the following, we
present the details of each part.
Part I. Extraction and Separation: Pre-training dataset
requires ground-truth annotations for instance segmentation.
According to the mask annotation, each picture participat-
ing in the training is separated into the background and
foreground. In order to get the finer foreground, we adopt
the matting method [16] to make the outline of instances
smoother. Because the stored form of mask annotation is
boundary points and edges, using such annotations directly
makes the outline of the foreground jagged. After separation,

Fig. 2. Background based on inpainting (top) vs. Background
based on new sampling (bottom). The inpainting method
might not repair some artifacts , but changing the background
does not cause this problem. (Best viewed in color.)

we get a proper instance mask and an incomplete background.
Then the two parts are processed separately.
Part II. Instance Scale Histogram Match: On the ground
of target dataset annotation, a discrete scale histogram H is
established to approximate the scale probability density func-
tion of target dataset Psize(s;Dtrain), which is rectified to
pay less attention to the long-tail part of scale distribution.
In H , K represents the number of bins in scale histogram,
R[k]− and R[k]+ are size boundaries of k-th bin. For ev-
ery separated instance, we use the size of the corresponding
bounding box as its scale representation s. First, we sample
an index of bin with respect to the probability of H . Then we
sample a target scale ŝ based on a uniform probability distri-
bution, whose min and max size equal to R[k]− and R[k]+,
respectively. Finally, we transform the instance according to
the ratio of ŝ to s. It can be defined by the affine transforma-
tion matrix,

A =

 r 0 tx
0 r ty
0 0 1

 , (2)

where r denotes the scale variance, tx and ty denote the coor-
dinate shift in x-axis and y-axis, respectively.
Part III. Probabilistic Structure Inpainting: For such a
background with an instance-shaped hole on it, we first adopt
the inpainting method [15] to fill in the blank area of the back-
ground inspired by InstaBoost [17]. In practice, however, the
effect of the traditional inpainting method can be very poor
because the object is reduced to a very small size. In order
to alleviate the image structure loss caused by instance-level
scale match, we introduce extra background to make up for
the distortion of the image. This also raises the question that
the context information of the object will be completely dif-
ferent from before. To some extent, it will confuse network
learning. Therefore, a hyper-parameter p is predefined to de-
termine whether a new background is needed. We use it to
find a trade-off between the two kinds of background. If the



T DJS(Psize(s;T (E))||Psize(s;D))

RSM 0.0091
RSM+ 0.0020
MSM 0.0133
MSM+ 0.0013

Table 1. The similarity between the scale distributions
aligned by different methods. A smaller similarity score de-
notes the two distributions are closer. D represents TinyPer-
son, E represents COCO, and T denotes the transformation
conducted by the scale match method.

random number is greater than p, we will sample a new image
from the pre-training dataset as background. On the contrary,
we still use the inpainting background. It should be noted that
the label of the new image will not participate in training.
Part IV. Combination: After getting the final background
and reasonable instance, we paste the transformed instances
on the corresponding position in background according to an-
notation. Adjusted images can be visualized in Fig. 2.

2.3. Discussion
In order to prove the effectiveness of SM+, we use the Jensen-
Shannon divergence [18] to quantitatively measure the simi-
larity between distributions. Here, p(x) and q(x) denote prob-
ability distribution of a discrete random variable x. Both p(x)
and q(x) sum up to 1, and p(x) > 0 and q(x) > 0 for any
x in X . Kullback-Leibler divergence[19] DKL(p(x), q(x)) is
defined in Eq. (3)

DKL(p(x)||q(x)) =
∑
x∈X

p(x)ln
p(x)

q(x)
. (3)

Therefore, we can get the formulation of Jensen-Shannon di-
vergence DJS(p(x), q(x)) from Eq. (4)

DJS(p(x)||q(x)) =
∑
x∈X

[
1

2
DKL(p(x)||

p(x) + q(x)

2
)

+
1

2
DKL(q(x)||

p(x) + q(x)

2
)].

(4)

According to Tab. 1, the JS divergence between scale
distribution transformed by SM+ algorithm is less than that
transformed by SM algorithm. The proposed SM+ more ef-
fectively bridges the gap between the scale distribution of pre-
training dataset and target dataset.

3. EXPERIMENT

3.1. Dataset
The experiments are conducted in two datasets: COCO
and TinyPerson. COCO involves 80 categories of objects.
TinyPerson is a tiny object detection dataset collected from
high-quality videos and web pictures. TinyPerson contains

72,651 annotated human objects with a low resolution on vi-
sual effect in total 1, 610 images. The size of most annotated
objects in TinyPerson is less than 20× 20 pixels.

3.2. Comparison with the state-of-the-art methods
In Tab. 2, Faster RCNN-FPN-MSM+, Faster RCNN-FPN
pre-trained with our proposed MSM+, produces state-of-the-
art results in all AP evaluations. The comparison well demon-
strates that our method is effective for tiny object detection.

3.3. Analysis
Pre-training Strategy: As shown in Tab. 3, we compare
SM+ with various pre-training strategies including ImageNet,
COCO800, RSM [4] and MSM [4]. The COCO800 means
that we control the size of images in (800, 1333) as input
and use different anchor settings for each of the two training
stages. For COCO we use the original as input. Scale match
based methods are applied to COCO dataset. Faster RCNN-
FPN is used as the detector. First, compared with ImageNet,
using COCO800 for pre-training can improve performance
with a proper anchor setting since the TinyPerson contains
much smaller objects than COCO.

Considering the person scale distribution of TinyPerson,
RSM and MSM can achieve higher accuracy. Furthermore,
SM+ can effectively match the scale of COCO to that of
TinyPerson and improve detection accuracy. For example,
RSM+ outperforms 0.13 point over RSM in AP tiny

50 . More-
over, using the monotone function proposed in [4], we get
MSM+, which gains an improvement of about 1.72% over
MSM.
Detector-agnostic: In order to further validate the efficiency
of the proposed approach, one-stage detector Adaptive Reti-
naNet is also chosen as baseline. In Tab. 4, the improvement
in one-stage detector is more than that in two-stage detec-
tor. RSM+ improves AP tiny

50 by 2.11 points. MSM+ also im-
proves AP tiny

50 by 1.66 points, and MRtiny
50 by 1.30 points.

The performance improvement of one-stage detector is
significantly greater than that of two-stage detector. In Tab.
3 and Tab. 4, the consistent improvement on both kinds of
detector demonstrates that the proposed refined scale match
(SM+) is detector-agnostic, which can be effectively used for
different kinds of detectors.
Probabilistic Structure Inpainting (PSI): We note that sim-
ply aligning scale distributions of pre-training dataset and tar-
get dataset at instance level does not improve performance
since the image structure is destroyed. SM+ involves sig-
nificantly zooming out objects, where the inpainting method
might not be effective in repairing image. This will cause
some artifacts, and damage the image structure as shown at
the top of Fig. 2. In contrast, PSI allows instances to be pasted
on another background image. In this case, the resulting im-
age will not have artifacts as shown in the bottom of Fig. 2.
To validate the effect of PSI, we include a baseline without
the background change (w/o PSI) in Tab. 5. We show that
this baseline drops performance dramatically. We believe the



Method AP tiny1
50 AP tiny2

50 AP tiny3
50 AP tiny

50 AP small
50 AP tiny

25 AP tiny
75

FCOS [9] 0.99 2.82 6.20 3.26 20.19 13.28 0.14
Adaptive RetinaNet[8] 27.08 52.63 57.88 46.56 59.97 69.60 4.49
Faster RCNN-FPN [5] 30.25 51.58 58.95 47.35 63.18 68.43 5.83
Faster RCNN-FPN-RSM [4] 33.91 55.16 62.58 51.33 66.96 71.55 6.46
Faster RCNN-FPN-RSM+ (ours) 33.74 55.32 62.95 51.46 66.68 72.38 6.62
Faster RCNN-FPN-MSM [4] 33.79 55.55 61.29 50.89 65.76 71.28 6.66
Faster RCNN-FPN-MSM+ (ours) 34.20 57.60 63.61 52.61 67.37 72.54 6.72

Table 2. Comparisons in terms of AP s (%). Larger AP means better performance. AP tiny
50 , AP tiny1

50 , AP tiny2
50 , AP tiny3

50 ,
AP small

50 reflect the performance of object size in range [2, 20], [2, 8], [8, 12], [12, 20], [20, 32], respectively. The Bold
indicates the best performance.

Pre-training Dataset AP tiny
50 (↑)

ImageNet 47.35
COCO800 49.76
RSM (COCO) 51.33
RSM+ (COCO) 51.46
MSM (COCO) 50.89
MSM+ (COCO) 52.61

Table 3. Comparisons of AP tiny
50 with Faster RCNN-FPN.

Compared with SM algorithm, SM+ algorithm shows how to
perform a better pre-training at a deeper level.

Pre-training Dataset AP tiny
50 (↑)

ImageNet 46.56
COCO800 45.03
RSM (COCO) 48.48
RSM+ (COCO) 50.59
MSM (COCO) 49.59
MSM+ (COCO) 51.25

Table 4. Comparisons of AP tiny
50 on Adaptive RetinaNet.

SM+ algorithm achieves consistent performance improve-
ment with the one-stage detector.

unrealistic image structure and artifact pattern make network
over-fitting, leading to undesirable results.

Moreover, replacing the background in PSI might be re-
garded as data augmentation. Thus, we further conduct ex-
periments to validate whether the performance gain is from
data augmentation. To study this, we include an experiment:
directly copy and paste objects on a new background image
without scaling its size. We introduce two baselines, CP and
CP+. CP means we crop all the instances and paste them on
a new image background, but the original annotations of the
new image will not be used during pre-training. CP+ means
both newly pasted objects and original annotated objects are
used for training. In Tab. 6, the two baselines achieve similar
results and slightly surpass COCO. However, they are lower
than MSM+ (COCO). This indicates that replacing the back-
ground can only bring limited improvement but it is not the
mechanism of our SM+. The effectiveness of SM+ comes
from achieving a finer distribution alignment at instance level
and better preserving the structure of the images.

Pre-training Strategy AP tiny
50 (↑)

RSM+ (w/o PSI) 50.12
RSM+ 51.46
MSM+ (w/o PSI) 50.69
MSM+ 52.61

Table 5. Ablation study on PSI. It is not enough to align
the distribution at instance level without considering the back-
ground. SM+ can achieve the desired effect with PSI.

Pre-training Dataset AP tiny
50 (↑)

COCO 49.96
CP (COCO) 50.66
CP+ (COCO) 50.46
MSM (COCO) 50.89
MSM+ (COCO) 52.61

Table 6. Effect of different methods. CP (COCO) and MSM
(COCO) both achieve limited performance improvements.

In addition, we also validate the effect of p in PSI and
show the results. We observe that a moderate probability
(p=0.4) can achieve a trade-off between image structure loss
and semantic loss.

4. CONCLUSION

The scale information for better pre-training is further inves-
tigated in this paper. Scale Match only focuses on the image-
level match and thus limits the feature representation learning
for detectors. In this paper, we propose a novel method named
Refined Scale Match (SM+). SM+, a much finer scale match
strategy, aligns scale distributions of pre-training dataset and
target dataset at instance level, yielding a more effective and
suitable matched dataset. Moreover, in order to alleviate the
loss caused by aligning distribution at instance level, an effec-
tive method, referred to as probabilistic structure inpainting
(PSI), is further proposed. PSI effectively balances the infor-
mation loss between image structure and semantics. Thor-
ough experimental results verified the superiority of the pro-
posed method over other state-of-the-art methods.

The relative size between two datasets is also very impor-
tant for tiny object detection, which will be further investi-
gated in the future.
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