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ABSTRACT
Phonation, or the vibration of the vocal folds, is the primary
source of vocalization in the production of voiced sounds by
humans. It is a complex bio-mechanical process that is highly
sensitive to changes in the speaker’s respiratory parameters.
Since most symptomatic cases of COVID-19 present with
moderate to severe impairment of respiratory functions, we
hypothesize that signatures of COVID-19 may be observable
by examining the vibrations of the vocal folds. Our goal is
to validate this hypothesis, and to quantitatively characterize
the changes observed to enable the detection of COVID-19
from voice. For this, we use a dynamical system model
for the oscillation of the vocal folds, and solve it using our
recently developed ADLES algorithm to yield vocal fold
oscillation patterns directly from recorded speech. Experi-
mental results on a clinically curated dataset of COVID-19
positive and negative subjects reveal characteristic patterns
of vocal fold oscillations that are correlated with COVID-19.
We show that these are prominent and discriminative enough
that even simple classifiers such as logistic regression yields
high detection accuracies using just the recordings of isolated
extended vowels.

Index Terms— COVID-19 detection, Vocal fold oscilla-
tions, Phonation models, Voice based detection, Voice profil-
ing

1. INTRODUCTION

The vibration of the vocal folds is the primary source of voic-
ing (or phonation) in humans [1]. The membranes that com-
prise the vocal folds are partially tethered by the muscles, car-
tilage and ligaments surrounding them, allowing them to open
and close the glottal area, and to vibrate in response to the pas-
sage of air through the glottis. As a result of their structure
and physical placement in the larynx, they have characteristic
eigen-modes of vibration, or eigen-frequencies at which they
can independently vibrate. These are a function of the bio-
physical properties of the vocal folds, such as their length,
thickness, elasticity etc. During phonation, the vibrations of
the two vocal fold membranes synchronize or lock at one of
their many eigen-frequencies. Both, the oscillations of the
vocal folds during phonation, and this entrainment (or syn-
chrony during vibration), result from an intricate balance of

aerodynamic forces across the glottis. These forces are di-
rectly dependent on the respiratory functions of the speaker,
among other factors [2], and are highly sensitive to changes
in them. The oscillation patterns of the vocal folds, the sym-
metry of their motion as the glottis opens and closes, the fre-
quencies at which they synchronize (or the extent of their syn-
chrony), can all be very easily compromised by fine fluctua-
tions in the airflow dynamics of the upper respiratory tract, or
even by slight impairments of any of the laryngeal muscles.
Disturbances in any of these factors can cause the vocal folds
to vibrate in an asymmetrical and asynchronized fashion, and
to fail to lock due to unstable eigen-modes.

Clinical observations of symptomatic patients of COVID-
19 have so far revealed that this virus moderately or often se-
riously impairs the functions of the lower and mid respiratory
tract, including that of the lungs, airways and musculature of
the respiratory tract. Patients who are symptomatic and have
tested positive for COVID-19 as the underlying cause have
not only reported changes in their voice, but also a general
inability to produce voice normally. This leads us to hypoth-
esize that the vocal folds of these persons are likely to exhibit
anomalies in their oscillation patterns during phonation, and
that these can be used to detect COVID-19 from voice. The
goal of this paper is to validate this hypothesis.

1.1. Related Work

As of now, literature on detecting COVID-19 from voice,
coughs and other respiratory sounds is recent and sparse [3].
One study [4] has attempted to detect COVID-19 by analyz-
ing the speech envelope, pitch, cepstral peak prominence and
the formant center-frequencies. This study observes high-
rank eigen-values tending toward relatively lower energy in
post-COVID-19 cases, but does not provide strict interpreta-
tions. Researchers have also used crowd-sourced data [5, 6]
with data-driven end-to-end deep learning methods for this
purpose. However, the data remain scarce, and deep learning
models are prone to over-fitting – there is no guarantee that
the network will specifically learn only COVID-19 related
characteristics, and not speaker-specific characteristics.

A controlled medical study that is of special relevance to
our work is reported by Huang et. al. [7], which uses stetho-
scope data from lung auscultation to analyze the breathing
patterns of COVID-19 patients. In this study, recorded audio
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signals were analyzed by six independent physicians. All
COVID-19 patients were observed to have abnormal breath
sounds like crackles, asymmetrical vocal resonances and in-
distinguishable murmurs. These results were reported to be
consistent with CT scans of the 9th intercostal cross-section
of the corresponding patient. The study found concrete ev-
idence of the association of abnormal breath sounds, and
asymmetries in vocal resonances with COVID-19 infection.
This study suggests that COVID-19 affects the source signal
that excites the vocal tract, which implicates abnormalities in
vocal fold oscillations. While it supports our hypothesis that
observing vocal fold oscillations may yield information rele-
vant to detection of COVID-19, it is infeasible to make such
direct observations of patient symptoms (using a stethoscope,
or using high-speech videography of vocal fold motion) at
scale for widespread diagnostic purposes.

In our work, we use a much more scalable and accessible
approach of computationally deducing the oscillations of the
vocal folds directly from recorded speech signals. The algo-
rithmic details of this approach are given in Sec. 2. Experi-
ments on clinically curated data reveal the presence of clear
bio-markers of COVID-19 in the vocal fold oscillation pat-
terns, in the estimated glottal flow, and in the residuals ob-
tained. In Sec. 3 we discuss these, and analyze their useful-
ness in detecting COVID-19 using multiple classifiers.

2. ESTIMATING VOCAL FOLD DISPLACEMENTS

2.1. The vocal fold oscillation model

Of the several mathematical models of phonation proposed in
the past decades [8, 9, 10, 11, 12, 13], the 1-mass asymmetric
body-cover model [8] is of particular interest to us due to its
ability to capture asymmetry in the oscillation of left and right
vocal folds. We briefly describe this model below.

Fig. 1 shows a schematic diagram of the vocal folds. As
they vibrate, the horizontal displacements of the left and right
vocal folds (xl and xr) are measured with reference to the
center of the glottis (central dashed line). x0 represents dis-
placements at rest. The model measures the displacements at
the location (yellow dots) where the folds are half their maxi-
mum thickness (τ ). The length of the vocal folds d is normal
to the plane of the figure and not shown.

The asymmetric 1-mass body-cover model is described by
the set of coupled non-linear differential equations:

ẍr + β(1 + x2
r)ẋr + xr −

∆

2
xr = α(ẋr + ẋl) (1)

ẍl + β(1 + x2
l )ẋl + xl +

∆

2
xl = α(ẋr + ẋl) (2)

where α is the coupling coefficient between the supra- and
sub-glottal pressure, β incorporates mass, spring and damp-
ing coefficients of the vocal folds, and ∆ is an asymmetry
coefficient. For a male adult with normal voice, their values

Fig. 1: Schematic diagram depicting a cross sectional
(frontal) view of the vocal folds. The folds have both hori-
zontal and vertical (curved arrows) modes of oscillation.

(calculated from actual videographic measurements), average
to around α ≈ 0.25, β ≈ 0.32 and ∆ ≈ 0.

The solution of the dynamical system above yields the dis-
placement, velocity and acceleration of the vocal folds as a
set of time-series. The time-series corresponding to xr and
xl represent the oscillations of the vocal folds. To obtain
these, the forward problem of estimating the time series must
be jointly solved with the inverse problem of estimating the
parameters of the dynamical system themselves. In [14], we
introduced the ADLES algorithm that achieves this by mini-
mizing the error between the glottal flow waveform obtained
by inverse filtering, and the vocal fold oscillations predicted
by the model as its parameter space is sampled. This joint
estimation algorithm is briefly explained in the section below.

2.2. Solving the forward and inverse problems jointly

During phonation, the vocal tract (of length L) acts as a fil-
ter that modulates the pressure wave produced by the airflow
through the glottis: F : p0(t) 7→ pL(t). p0(t), the pressure
at the glottis, can be deduced from pL(t), the pressure sensed
by a microphone close to the lips, through inverse filtering:
p0(t) = F−1(pL(t)). If A(0) represents the cross-sectional
area of the vocal channel at the glottis, then the volume veloc-
ity of airflow at the glottis, u0(t), can be deduced from p0(t)

at the glottis as um0 (t) = A(0)
ρc p0(t), where c is the speed

of sound and ρ is the ambient air density. The superscipt m
denotes that um0 (t) is estimated from the pressure wave mea-
sured by a microphone near the mouth.

The volume velocity u0(t) can also be estimated from the
solution to the model in Eqns. 1 and 2: u0(t) = c̃d(2x0 +
xl(t) + xr(t)), where d is the length of vocal folds, and c̃ is
the air particle velocity at the midpoint of the vocal fold.

We derive our model parameters such that the glottal
flow u0(t) predicted by the model matches the measured
flow um0 (t) as closely as possible. We define the residual
R(t) = u0(t) − um0 (t) as the difference between the pre-
dicted and actual glottal flows, and the residual energy as

E =

∫ T

0

R(t)2dt (3)
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We estimate our model parameters to minimize the residual
energy E subject to Eqns. 1 and 2, and boundary constraints:

xr(0) = Cr, xl(0) = Cl, ẋr(0) = 0, ẋl(0) = 0 (4)

where Cr and Cl are constants. To solve the above functional
least squares, we define the Lagrangian:

L = E +

∫ T

0

(λrEr + λlEl)dt+ νlẋl(0) + νrẋr(0)

+ µl(xl(0)− Cl) + µr(xr(0)− Cr) (5)

where Er encodes the constraint of Eq. 1:

Er = ẍr + β(1 + x2
r)ẋr + xr −

∆

2
xr − α(ẋr + ẋl)) (6)

and El is similarly obtained from Eq. 2. λl, λr, µr, µl, νr
and νl are Lagrangian multipliers. Differentiating L w.r.t. the
model parameters and simplifying, we get, for λr:

λ̈r + (2βxrẋr + 1− ∆

2
)λr + 2c̃dR = 0

β(1 + x2
r)λr − α(λr + λl) = 0 (7)

and a similar pair of equations for λl as well. At the end of
the recording we also have:

λr(T ) = 0, λ̇r(T ) = 0, λl(T ) = 0, λ̇l(T ) = 0

Substituting into the Lagrangian and simplifying we get the
derivatives of L w.r.t. the model parameters:

Lα =

∫ T

0

−(ẋr + ẋl)(λr + λl)dt (8)

Lβ =

∫ T

0

((1 + x2
r)ẋrλr + (1 + x2

l )ẋlλl)dt (9)

L∆ =

∫ T

0

1
2 (xlλl − xrλr)dt (10)

Using gradient descent to optimize objective (3), we get the
following update rules:

αk+1 = αk − δLα
βk+1 = βk − δLβ

∆k+1 = ∆k − δL∆ (11)

where δ is the step-size and k refers to kth iteration.

3. EXPERIMENTS AND RESULTS

The algorithm described above is used to solve for the model
parameters α, β and ∆. These parameters are then substi-
tuted in the model to iteratively obtain xr and xl. The time
series corresponding to xr and xl comprise the vocal fold

oscillations. The behavior of their trajectories is studied in
the model’s phase space. The behavior can also be located
on a bifurcation diagram that maps the behavior types in the
model’s parameter space. However, we do not extend our
study to bifurcation diagrams in this paper.

Data used: For our study we used a data set collected
under clinical supervision and curated by Merlin Inc., a pri-
vate firm in Chile. The dataset included recordings from 512
individuals who were tested for COVID-19, and turned out
either COVID-19 postive or negative. Of these, we chose
the recordings from only those individuals who had been
recorded within 7 days of being medically tested. Only 19
individuals satisfied this criterion. Of these, 10 were females
and 9 were males. 5 females and 4 males had been diagnosed
with COVID-19, and the rest had tested negative. The speech
signals were sampled at 8 kHz, and recorded over micro-
phones on commodity devices. Each individual was asked to
utter multiple sounds, including the vowels /a/, /i/ and /u/.

Experiments performed: We performed two studies. In
one, we estimated the vocal fold oscillations of the subjects in
our dataset, observed the differences in the patterns of phase
space trajectories of the model. Only the recordings of ex-
tended vowels /a/, /i/ and /u/ were used for this purpose. Each
recording was sectioned into segments of 50ms duration, with
an overlap of 25ms, generating 3835 sets of oscillation time-
series in all. We used the value of the residualR(t) in Eq. 3 to
gauge our model’s sufficiency in modeling extreme asymme-
try in vocal fold motion. The value of R(t) inversely relates
to the accuracy with which the model is likely to estimate the
vocal fold oscillations.

In the second study, we used the residuals and the coef-
ficients α, β and ∆ as features, and investigated the use of
several classifiers to discriminate between COVID-19 posi-
tive and negative individuals. The classifiers tested in this
binary classification task were Logistic regression (LR), Sup-
port vector machine with a nonlinear radial basis function ker-
nel (NL-SVM), Decision tree (DT), Random forest (RF) tree
and AdaBoost (AB). 3-fold cross validation experiments were
done using recordings of the vowels /a/, /i/ and /u/.

Results of Study 1: The results of the first study are
shown in Figs. 2 and 3. Fig. 2 shows the phase space tra-
jectories of the model on a displacement vs. velocity plane
for each vocal fold, for COVID-19 positive and negative pa-
tients of both genders. We see a significant difference in the
phase space behaviors of COVID-19 positive and negative
individuals (with a very small number of outliers the need
to be investigated in further studies). The phase space tra-
jectories for COVID-19 negative individuals are limit cycles
or slim toroids, indicating a greater degree of synchroniza-
tion in the eigenmodes of vibration, and greater symmetry of
motion. For COVID-19 positive patients, the trajectories are
more complex, indicating a higher degree of both asynchrony
and asymmetry and the range of motion is reduced. The vo-
cal folds are unable to maintain the natural self-sustained vi-
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(a) Female, negative (b) Female, positive (a) Male, negative (b) Male, positive

Fig. 2: Phase space trajectories for the left and right vocal folds for COVID-19 positive and negative individuals for the vowel
/i/. Left panels: xl (x-axis) vs. ẋl (y-axis) Right panels: xr vs. ẋr for each pair.

brations required for vocalization, and thier range of motion
is restricted by an order of magnitude relative to normal. Al-
though measures of divergence may be used to quantify these,
e.g. Lyapunov exponents [15], we have not used these yet.

Fig. 3 shows a comparison of the estimated oscillations
of the vocal folds to the glottal flow waveform obtained by
inverse filtering. Note that in reality, the two are not the same.
The former are the actual displacements of the vocal folds
during phonation, the latter is the airflow volume velocity val-
ues across the glottis. Their strong correlation is however re-
flected in the example shown in Fig. 3.

Fig. 3: Estimated vocal fold oscillations compared to the es-
timated glottal flow waveform of a subject

Results of Study 2: The results of the second study are
shown in Tables 1 and 2, In all experiments, performance was
evaluated using the coresponding Reciever Operating Char-
acteristics (ROC) curve. Tables 1 and 2 report the area under
this curve (ROC-AUC) and its standard deviation (STD) for
each experiment.

Table 1 presents the ROC-AUC and STD obtained for
the vowels - /a/, /i/ and /u/. The segments used in the 3-
fold cross-validation experiment were stratified – the speak-
ers in the training set were not included in the test set. We
observe from Table 1 that all the classifiers achieve a compa-
rable performance of ≈ 0.8 ROC-AUC. The statistical signif-
icance was tested for all classifiers and all were found to be
significant, with p-values better than 1e−5. This strongly indi-
cates that the features (residual values and vocal fold oscilla-
tion coefficients) can indeed capture the anomalous vibrations
of COVID-19 patients without using sophisticated modeling
techniques such as neural networks.

In order to gain further insight into the importance of these
features, we examined the splits within the decision tree clas-
sifier specifically. We found that the residual R is consis-
tently the most important feature, indicating that the vocal
fold displacements themselves are highly discriminative for

Classifiers LR NL-SVM DT RF AB
ROC-AUC 0.825 0.789 0.803 0.794 0.812
STD 0.032 0.037 0.081 0.060 0.064

Table 1: Performance of different classifiers in a stratified 3-
fold cross-validation experiment.

COVID-19. We point out here that while high residual values
are discriminative, extreme values may occur because of the
inability of the simple model used to model abnormally de-
viant oscillations. More sophisticated models must be used to
to oversome this shortcoming, for better accuracy.

/a/ /i/ /u/ /a/+/i/ /a/+/u/ /i/+/u/
AUC 0.653 0.912 0.877 0.728 0.784 0.901
STD 0.119 0.023 0.035 0.089 0.038 0.023

Table 2: Performance of logistic regression on extended vow-
els and their combinations.

Table 2 shows the performance of logistic regression on
different vowels and their combinations. We observe that the
vowel /i/ (a high front vowel) consistently yields the best per-
formance, followed by /u/ (a high back vowel) then /a/ (a low
back vowel). This indicates that the ability to reach the higher
frequency energy peaks during phonation is compromised due
to COVID-19 infection.

4. CONCLUSIONS

While vocal fold oscillation patterns can be indicative of
COVID-19, two caveats must be noted: a) they are likely to
be useful only in symptomatic patients, and b) the exclusive-
ness of the anomalies observed to other respiratory conditions
has not been tested. We can only say that COVID-19 disrupts
the entrainment of the vocal folds during phonation, and
causes asymmetries in their motion, and that these charac-
teristics can yield discriminative features that can be used to
detect COVID-19 with even simple classifiers. Furthermore,
it seems possible to achieve a high ROC-AUC using just a
single phonated sound (e.g. the vowel /i/). We hope that the
techniques presented in this paper can help facilitate future
work towards a simple and cheap alternative for the rapid
detection of COVID-19, using more sophisticated models to
better capture pathological vocal fold oscillations.
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