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ABSTRACT
This study presents a novel solution to the problem of binaural local-
ization of a speaker in the presence of interfering directional noise
and reverberation. Using a state-of-the-art binaural localization al-
gorithm based on a deep neural network (DNN), we propose adding
a source separation stage based on non-negative matrix factorization
(NMF) to improve the localization performance in conditions with
interfering sources. The separation stage is coupled with the local-
ization stage and is optimized with respect to a broad range of dif-
ferent acoustic conditions, emphasizing a robust and generalizable
solution. The machine listening system is shown to greatly benefit
from the NMF-based separation stage at low target-to-masker ratios
(TMRs) for a variety of noise types, especially for non-stationary
noise. It is also demonstrated that training the NMF algorithm on
anechoic speech provides better performance than using reverberant
speech, and that optimizing the source separation stage using a lo-
calization metric rather than a source separation metric substantially
increases the system performance.

Index Terms— Binaural sound source localization, non-negative
matrix factorization, source separation, directional interference

1. INTRODUCTION

Automatic localization of sound sources is relevant for many audio
applications, such as the steering of a beamformer for use in hearing
aids [1]. A beamformer can be used to enhance a particular target
direction and reduce directional interferences from other directions.
For binaural machine listening, localization is a fairly trivial task to
solve when only one speaker is present. However, when the task
is to localize one specific sound in the presence of interfering di-
rectional sources, it becomes more difficult for machines to achieve
human performance. Humans use interaural time differences (ITDs)
and interaural level differences (ILDs) to localize sounds [2], and
these cues have been shown to be useful for sound localization by
machines as well [3, 4]. This study is concerned with the task of
localizing a speech source in the presence of directional masking
noise. In this situation, the target speaker and the masker provide
competing ITDs and ILDs, and those alone will not be sufficient to
consistently localize the target speaker.

Only a few studies have directly addressed the problem of lo-
calizing sounds in the presence of directional masking noise. One
approach has been to introduce a speech separation stage into the lo-
calization algorithm, which allows one to selectively weight the evi-
dence from individual time-frequency units based on the probability
that the target source is dominant in that particular unit. A measure
of this probability can be obtained by means of various source sepa-
ration methods, each of which have their own advantages and draw-
backs. An approach based on a Gaussian mixture model has been

shown to be useful in the same task as is considered in this study, but
it either requires a priori knowledge about the nature of the masking
sound, or assumes that the masker can be modelled by a universal
background model based on a few distinct noise types [5]. DNN-
based approaches have also shown promising results [6, 7], but the
complexity of these models makes them potentially unsuitable for
applications where computational power is limited, for example in
hearing aids. Classical noise reduction techniques can be used as
learning-free speech separation approaches, but these are typically
unable to deal with non-stationary noise, since they assume that the
noise varies more slowly than the speech [8, 9, 10]. Common to all
source separation methods is that their hyperparameters are typically
optimized with respect to minimizing the distortion and artifacts of
the target signal [11]. However, these metrics do not necessarily
provide the best signal separation for a localization task, and it may
be advantageous to optimize the separation stage with respect to a
localization metric instead.

The aim of this study was twofold. The first goal was to investi-
gate whether a source separation method based on non-negative ma-
trix factorization (NMF) can aid sound localization. The NMF-based
approach has a number of potential advantages over the previously
mentioned ones. It allows one to train a model ahead of time based
only on the target source and learn the representation of the inter-
fering sources during the actual separation, thus making the model
robust to unseen source types [12]. Moreover, an NMF-based ap-
proach does not assume stationarity of the noise source, and is likely
to be superior to classical noise reduction techniques when the inter-
fering noise is non-stationary. The second goal of the study was to
investigate whether optimizing the separation stage with respect to
a localization metric would improve performance compared to opti-
mizing it with respect to classical separation metrics.

2. SYSTEM DESCRIPTION

2.1. System overview

A schematic of the combined separation-localization system is
shown in Fig. 1. A binaural noisy mixture is fed separately to two
parallel stages, the NMF-based separation stage and the DNN-based
localization stage.

The separation stage divided the noisy mixture sampled at a rate
of 16 kHz into overlapping frames of 20ms duration with a shift of
10ms. Each frame was Hann-windowed and zero-padded to a length
of 512 samples, and a short-time discrete Fourier transform (STFT)
was computed. To further reduce the dimensionality of this represen-
tation, a gammatone filterbank was used to integrate the STFT repre-
sentation into 32 frequency bands spaced according to the equivalent
rectangular band (ERB) scale, with center frequencies from 80Hz to
8 kHz. In the following, the matrix X, defined in Eq. (1), will be
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Fig. 1. Schematic overview of the combined separation-localization system.

used to denote the magnitude response of this filterbank given the
STFT of some noisy mixture. Likewise, matrices T and M will be
used to denote the magnitude response of the filterbank given the in-
dividual target and masker STFTs, respectively. The matrices T and
M were not made available to the NMF-based separation stage.

The DNN-based localization stage decomposed the noisy mix-
ture into 32 frequency bands using a gammatone filterbank with the
same parameters as the separation stage. This allowed the local-
ization stage to extract the cross-correlation function (CCF) feature
while retaining a time-frequency representation that was compatible
with the weights obtained from the separation stage. In the combi-
nation stage, the weights from the separation stage were applied to
the azimuth posteriors from the localization stage, and the weighted
posteriors were integrated across time and frequency, resulting in a
final, target-specific azimuth prediction.

2.2. NMF-based separation stage

The NMF-based source separation stage was based on the algorithm
proposed in [12]. In this type of NMF, sometimes termed semi-
supervised NMF, a subset of the dictionary matrix is trained before
the separation is performed. The pre-trained subset of the dictionary
was trained on clean speech, whereas the remaining part was learned
during the separation process. The amount of dictionary items used
for training on clean speech was determined by the hyperparameter
KT . The algorithm had three other hyperparameters: the rank of
the masker dictionaries, KM , and a sparsity parameter for the target
and masker dictionaries, λT and λM . For any given noisy mixture,
the NMF algorithm sought to factorize X, representing the sum of
matrices T and M, into a dictionary W and an activation matrix H:

X = T+M ≈WH = [WTWM ]

[
HT

HM

]
, (1)

where WT is the fixed target dictionary, WM is the flexible masker
dictionary and HT and HM denote the activation matrices for the
target and masker, respectively. WM , HT and HM were learned
by the NMF-algorithm using a gradient descent scheme. Estimates
of the target and masker time-frequency representations, T̂ and M̂,
were then found as:

T̂ = WTHT

M̂ = WMHM

(2)

These estimates were then passed to the combination stage, where
time-frequency specific weights were determined.

2.3. DNN-based localization stage

The DNN-based localization system was the same as the one used
in several previous studies [3, 5, 13]. A separate DNN was trained

for each of the 32 frequency bands. Although simultaneous sources
overlap in time, each time-frequency unit is mostly dominated by a
single source. Hence, employing frequency-dependent DNNs was
found to be effective for localizing simultaneous sound sources and
allows training to be done using single-source data. Each DNN was
composed of an input layer with 34 nodes, two hidden layers with
128 nodes each, and 37 output nodes. The 34 input nodes of each
DNN corresponded to the 34 features extracted from the correspond-
ing frequency band of the noisy mixture: 33 features from the CCF
between the left and right ears using a lag range of ±1 ms, and one
interaural level difference (ILD) feature, namely the energy ratio be-
tween the left and right ears. The hidden layers used a sigmoid ac-
tivation function, and the 37 output nodes of the DNN corresponded
to the 37 possible angles ranging from −90◦ to 90◦ in 5◦-steps.
The DNN was taken from [5] and was trained without the separation
stage. The DNN stage as a whole was considered a fixed building
block of the system, and was not subject to the validation procedure
presented in this study. In principle, any localization system based
on a time-frequency representation of the input signal could benefit
from the separation stage proposed in this study.

2.4. Combination stage

The localization stage of the combined system shown in Fig. 1
returned the posterior probability P (φ|otf ) of a sound source be-
ing present at azimuth φ, given the binaural feature vector otf ex-
tracted from frequency band f at time frame t. In order to be able
to weight distinct time-frequency bins, a weighting factor ωtf was
introduced. Posterior probabilities were then integrated across the
time-frequency domain to obtain a final azimuth estimate [3, 5]:

P (φ|o) = 1

T

T∑
t=1

∏
f P (φ|otf )ωtf∑

φ

∏
f P (φ|otf )ωtf

(3)

P (φ|o) is the probability of the target source being present at az-
imuth φ, given some target weights ωtf . The weights were obtained
from the separated target and masker signals as [14]:

ωtf =

(
TMRtf

TMRtf + 1

)β
(4)

where

TMRtf =

(
T̂tf,L + T̂tf,R

M̂tf,L + M̂tf,R

)2

(5)

denotes the target-to-masker ratio (TMR) in individual time-frequency
bins (t, f). In Eq. (5), TMR is obtained by averaging the target and
masker magnitude estimates T̂ and M̂ across the left (L) and right
(R) input channels. The ratio of the target and masker estimates
is then squared to obtain a power representation. β in Eq. (4)
was considered a system hyperparameter, and was optimized in the
validation stage.



3. EVALUATION PROCEDURE

The target speech material was selected from the TIMIT Acoustic-
Phonetic Continuous Speech Corpus [15], while the masking
sounds were taken from the Kaggle Audio Tagging Challenge
2018 database [16] and the ICRA noise database [17]. The TIMIT
database contains recordings of ten sentences spoken by each of
630 speakers, and covers eight major dialects of American English.
Eight categories of natural sounds from the Kaggle database were
used as maskers: applause, the laughter of a toddler, the clattering
of a computer keyboard and a variety of musical instruments. In ad-
dition, three noises from the ICRA database were selected: ICRA01
(unmodulated speech shaped noise, male), ICRA05 (3-band speech
modulated noise, male) and ICRA07 (3-band speech modulated
noise, six-person babble).

In each presentation, one target speech recording and one
masker were filtered with a binaural room impulse response (BRIR)
from the Surrey database [18]. The rooms used had different re-
verberation times (T60) varying between 0 s and 0.89 s, and were
recorded in an anechoic chamber, an office, a classroom, a cinema-
style lecture theatre and a large presentation space with a very high
ceiling. The target sentence, BRIR, target and masker azimuth
angles and long-term TMR of the mixture were all independently
randomized. In the validation stage, the masking noise types were
also randomized. In the test stage, the same conditions were used for
each noise type (NatNoises-TEST, ICRA01, ICRA05 and ICRA07).
Conditions where the target and masker were collocated were not
of interest to this study, as in these conditions, the binaural cues
from the masker also pointed to the correct location of the target. To
avoid these conditions, a minimum separation of at least 10 degrees
between target and masker was enforced in both stages and in all
conditions.

The standard TRAIN set of the TIMIT database was used for
the validation stage, and the TEST set for the test stage. The Kag-
gle natural sounds noise corpus was also split into a validation set
(NatNoises-VAL) and a test set (NatNoises-TEST). From the ICRA
database, ICRA01, ICRA05 and ICRA07 were used for testing, but
not for validation. To reduce computation time, the validation pro-
cedure was split into two phases. First, the model was validated
with respect to λT , λM , KT and KM . β was set to 0.5 in this
first phase. For the selected model, β was then subsequently op-
timized in a second validation phase. TIMIT sentences were also
used to train the target-specific dictionaries WT . In both the valida-
tion and test stages, the target matrix for training the dictionary was
obtained by concatenating 500 sentences from the relevant TIMIT
subset (TRAIN or TEST), applying the aforementioned STFT and
filterbank processing, and decimating the resulting time-frequency
representation in time by a factor of 5. The decimation ensured that
the phonetic content in the training set was diverse while keeping
the dimensionality of the training matrix low. The 500 sentences
used for dictionary training were excluded from the subsequent val-
idation/test procedure. The dataset splits, validation and test stage
settings and conditions considered are summarized in Tab. 1.

Table 1. Dataset splits and experimental condition parameters
Validation stage Test stage

Targets TIMIT-TRAIN TIMIT-TEST
Maskers NatNoises-VAL NatNoises-TEST, ICRA
Rooms Surrey anechoic All five Surrey rooms
Azimuths −90° to 90° , 5° steps
Long-term TMRs -15dBA to 15dBA, 5dBA step

4. MODEL VALIDATION AND SELECTION

Two distinct experiments were performed, each with their own vali-
dation and test stages. Unless otherwise stated, all validation and test
stages used the percentage of correctly predicted azimuths (percent
correct, PC) as the performance metric. Experiment 1 compared the
influence of validating the NMF-based separation stage using either
a localization metric or a separation metric, as well as the influence
of using either anechoic or reverberant speech for training and val-
idation. For this purpose, two variants of the NMF algorithm were
trained. The first NMF variant (NMF-REV) used the most reverber-
ant room (room D) of the Surrey database for training and validation
instead of the anechoic condition. The second NMF variant (NMF-
SDR) used anechoic speech for training and validation, but used the
signal-to-distortion ratio (SDR) metric proposed in [11] for valida-
tion instead of the PC. In experiment 1, 250 conditions were used
for phase one of the validation, 1,000 for phase two, and 40,000 for
testing.

Experiment 2 compared the localization performance of the best
NMF system from experiment 1 with three baseline systems. In the
first baseline system, the separation stage was omitted. This was
achieved by simply setting ωtf was to 1 for all (t, f). In the sec-
ond baseline system, oracle information about the presence of the
target was used by replacing T̂ and M̂ in Eq. (5) with T and M.
The third and final baseline system was a learning-free system in-
spired by [8]. This system used two independent single-channel
noise reduction systems consisting of the minimum mean-square er-
ror (MMSE)-based estimator [9] and the adaptive second-order noise
power spectral density estimator [10]. The smoothing factor α used
by the decision-directed approach for estimating the a priori signal-
to-noise ratio corresponded to a time constant of 0.396 s [9]. The re-
spective outputs of the two noise reduction systems were then used to
design the adaptive post-filter for arbitrary beamformer (APAB) [19]
which was then applied to both the left and the right ear signals. In
experiment 2, 750 conditions were used for phase one of the valida-
tion, 5,000 for phase two, and 100,000 for testing.

The parameter values resulting from the validation procedure are
shown in Tab. 2, along with a label indicating which experiment the
different algorithms were used in.

Table 2. Optimal hyperparameter values
Algorithm Exp. # log2 β KT KM λT λM
NMF 1,2 -0.5 64 16 0.015 0
NMF-REV 1 -1.5 64 16 0.035 0.010
NMF-SDR 1 10.5 8 8 0.025 0.020
APAB 2 7 - - - -
Oracle 2 4 - - - -
Loc. only 2 - - - - -

5. PERFORMANCE EVALUATION

Figure 2 shows the results of experiment 1, where the algorithms
NMF-REV and NMF-SDR were tested against the standard NMF
algorithm. Both variations generally performed worse than the
standard NMF algorithm. The NMF-SDR algorithm showed a par-
ticularly poor performance, indicating that a combined separation-
localization system optimized for SDR does not simultaneously
optimize localization performance. Interestingly, the NMF-REV
algorithm performed worse than the regular NMF algorithm for low



TMRs even in the room that the NMF-REV algorithm was specif-
ically trained on. This indicates that including reverberation in the
training set is not a good choice when using NMF for source sepa-
ration in low TMR conditions. At high TMRs, there seems to be a
slight advantage of using reverberation in the training and validation
stages. This may be because reverberation that stems from the target
source is more detrimental for the NMF algorithm when the target
dictionary is not trained on this condition, whereas reverberation
from uncorrelated sources is more easily modelled by the masker
dictionary.

Fig. 2. Results of experiment 1. Localization performance of the
three NMF algorithms in the presence of different noise types as
a function of the long-term TMR (left panel) and as a function of
T60(right panel).

Figure 3 shows the results of experiment 2 for the individual noise
types. The APAB algorithm had about 62% correct predictions for
the three nonstationary noise types, and around 80% for ICRA01
(stationary speech-shaped noise). This difference was expected,
as this algorithm was specifically designed to deal with stationary
noise. The NMF algorithm, on the other hand, showed better perfor-
mance than the APAB baseline algorithm for the three nonstationary
noise types, but slightly poorer for the stationary ICRA01 noise.

Fig. 3. Results of experiment 2. Localization performance of the
four localization algorithms in the presence of different noise types.
Results shown are averaged across experimental parameters other
than noise type.

Figure 4 shows the results of experiment 2 as a function of long-
term TMR and of T60. The NMF algorithm outperformed the APAB
baseline algorithm at low TMRs, but did so at the cost of reduced
performance at high TMRs. The performance of the NMF algorithm
seems to plateau at around 85%. An informal analysis indicated that
this effect could be alleviated by using higher ranks for the target and
masker dictionaries than those considered in this study. No substan-
tial drop in performance was observed when moving from anechoic
to reverberant conditions.

Fig. 4. Results of experiment 2. Localization performance of the
four localization algorithms in the presence of different noise types
as a function of the long-term TMR (left panel) and as a function of
T60 (right panel).

6. DISCUSSION AND CONCLUSION

The present study demonstrated that an NMF-based source sepa-
ration stage can improve the localization performance of a binau-
ral machine listening system in a wide variety of different acous-
tic conditions. The NMF algorithm outperformed a baseline algo-
rithm based on spectral subtraction in all five rooms considered in
this study. The NMF-based separation stage was shown to be espe-
cially useful in conditions with low TMR conditions and nonstation-
ary noise. The NMF algorithm performed worse than the baseline
in conditions with high TMRs and stationary noise. This is likely
attributable to the inherent difference between the separation ap-
proaches, the NMF being a learning-based approach. The APAB
algorithm is particularly effective in the presence of stationary noise,
while the conditions in which the NMF algorithm is likely to be use-
ful are largely defined by what data it is trained on and in which
conditions it is validated. It is thus likely that an NMF-based algo-
rithm trained specifically on stationary noise at high TMRs would
perform better than the baseline in these conditions, at the potential
cost of reducing the general applicability to a wide range of acoustic
conditions. With regards to the considered room conditions, training
and validating on anechoic speech provided the best performance
for all acoustic conditions. This indicates that training on anechoic
speech provides a level of robustness towards different acoustic con-
ditions. Training and validating on reverberant conditions, on the
other hand, reduced the performance for all room types and across
TMRs. This observation is inconsistent with the idea that a more
specific training set improves performance in the narrower set of
conditions included, as the performance of NMF-REV was lower
even in the specific room condition that it was trained on. Opti-
mizing the source separation algorithm using the sound localization
performance as the objective was found to be of great importance.
This shows that when localizing in the presence of directional inter-
ference, the best signal separation does not necessarily lead to the
best target source localization.

In summary, it has been demonstrated that an NMF-based
approach to source separation is a promising addition to the state-
of-the-art localization system. A basic NMF implementation was
considered here which can be improved by using convolutional
NMF [20] or non-negative tensor factorization [21]. Moreover, a
low-latency implementation for real-time processing [6, 7] could be
considered in future investigations.
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