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ABSTRACT

We present an introspection of an audiovisual speech en-

hancement model. In particular, we focus on interpreting

how a neural audiovisual speech enhancement model uses

visual cues to improve the quality of the target speech signal.

We show that visual cues provide not only high-level infor-

mation about speech activity, i.e., speech/silence, but also

fine-grained visual information about the place of articula-

tion. One byproduct of this finding is that the learned visual

embeddings can be used as features for other visual speech

applications. We demonstrate the effectiveness of the learned

visual embeddings for classifying visemes (the visual anal-

ogy to phonemes). Our results provide insight into important

aspects of audiovisual speech enhancement and demonstrate

how such models can be used for self-supervision tasks for

visual speech applications.

Index Terms— audiovisual speech enhancement,

lip reading, viseme classification, self-supervised learning

1. INTRODUCTION

The goal of monaural (single-channel) speech enhancement is

to improve the quality and intelligibility of speech when the

audio is recorded in a noisy environment from a single mi-

crophone [1]. Enhancement models attenuate additive noise

from a speech signal and can be used as pre-processors for

various downstream applications, including automatic speech

recognition (ASR) and speaker verification [2–6].

Previous research has shown that acoustic models used

for speech enhancement benefit from the addition of visual

cues [7–12]. Although these models have shown promising

results, it is unclear how visual cues are utilized by the mod-

els. One hypothesis is that visual cues only provide high-level

information about speech activity, i.e., speech vs. no speech,

depending on whether the lips are moving or not. An alter-

native hypothesis is that visual cues provide fine-grained in-

formation about what is being articulated. Our work aims to

interpret how visual cues are used by audiovisual speech en-

hancement models. Such analysis is not only necessary for

understanding the mechanism by which an audiovisual en-

hancer uses visual cues, but also for understanding the perfor-

mance gains obtained from the addition of visual cues.

We study the performance of audio-only speech enhance-

ment models as a function of what is being articulated, where

we use visemes as the basic unit of analysis. A viseme con-

sists of a cluster of phonemes that share the same place of

articulation, and so visemes represent visually indistinguish-

able phonemes [13]. For example, the phonemes /uh/ and

/w/ both map to a rounded vowel viseme, while phonemes

/b/ and /m/ map to a viseme representing bilabial consonants.

We hypothesize that enhancement performance will vary de-

pending on what is being said since certain sounds are more

visually prominent than others. Given the per-viseme audio-

only enhancement performance, we then quantify the perfor-

mance gains obtained from the addition of visual cues to the

enhancement model.

We also hypothesize that the visual embeddings implicitly

learned by the audiovisual model can be used for other visual

speech tasks. We show that these visual embeddings can be

used to discriminate visemes during continuous speech, e.g.,

rounding lips, stretching lips, and visible teeth. Our results

show that audiovisual speech enhancement can be used as a

self-supervision task for learning meaningful visual speech

embeddings without relying on manual annotations.

2. AUDIOVISUAL ENHANCEMENT MODEL

Our architecture is shown in Figure 1. The neural enhancer

receives two inputs: the squared magnitude of the short-time

Fourier transform (STFT), i.e., the power spectrum, of the

mixed speech segment, and a video segment containing the

corresponding pose-normalized gray-scale mouth images of

dimension w× h× t. To produce an enhanced version of the

input speech, the model predicts an ideal ratio mask (IRM),

which we write as:

IRM(m, f) =
|S(m, f)|2

|S(m, f)|2 + |N(m, f)|2

where |S(m, f)|2 and |N(m, f)|2 represent the power spec-

trums of the speech and noise signals at frame m and fre-

quency bin f . Element-wise multiplying an IRM by the

power spectrum of the mixed signal gives an optimal estimate,

in the sense of the minimum mean square error (MMSE), of

the power spectrum of the clean signal [14].

http://arxiv.org/abs/2004.12031v4
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Fig. 1. The audiovisual speech enhancement system.

2.1. Audiovisual Neural Model

The audiovisual neural model, shown in Figure 2, consists of

three sub-networks: the audio encoder, the video encoder, and

the mask predictor.

The audio encoder induces an embedding given the acous-

tic representation of the mixed input speech. We experiment

with both fully-connected- and LSTM-based audio encoders

in this work. The video encoder induces an embedding given

the video representation. The video encoder is based on the

VGG-M architecture [15], which consists of a series of conv-

pool layers, followed by a series of fully-connected layers.

Finally, the mask predictor outputs an IRM given the con-

catenated multimodal embedding. The mask predictor con-

sists of a series of fully-connected layers followed by a fully-

connected linear regression layer.

3. EXPERIMENTAL SETUP

3.1. Dataset

We use an in-house audiovisual corpus containing around

68 hours (39,097 utterances) of speech from 600 gender-

balanced speakers. The utterances are queries for a digital

assistant spoken in English with an American accent. The au-

dio is sampled at 16kHz using a 16-bit PCM encoding. The

video has a frame rate of 60Hz and a resolution of 720×1280.

We randomly split the dataset into gender-stratified partitions

using a 80/10/10 rule. The resulting splits consist of 480

speakers (29,415 utterances, 52 hours) for training, 60 speak-

ers (4,650 utterances, 8 hours) for validation, and 60 speakers

(5,032 utterances, 8 hours) for testing.

3.2. Details

Mixed utterances for training are created on-the-fly by mixing

the target utterance with a random utterance from a different

speaker in the training set. The mixtures used for the vali-

dation and test sets are fixed and are created using speakers

from their respective partitions to ensure that the model does

not see any of the validation or test speakers during training.
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Fig. 2. The audiovisual speech enhancement neural model.

All of the samples are mixed at signal-to-noise-ratio (SNR) of

0dB.

Features: We train our models using 200ms audiovisual

segments. Audio features represent the squared magnitude of

the STFT of the mixed input signal extracted using a 25ms

Hamming window with a hop size of 10ms. Visual features

represent a sequence of 128 × 96 cropped gray-scale images

of the mouth region for the target speaker extracted using

dlib [16].

Training: The neural networks are trained with the

ADAM optimizer using a learning rate of 1e-4 for a max-

imum of 100 epochs. We monitor the validation performance

during training and apply early stopping when the validation

loss converges. The loss functions that we use are described

in Section 4.1.

Architecture: The video encoder is based on the VGG-

M architecture [15] and consists of five convolutional blocks

followed by three linear blocks. Each convolutional block

consists of a 3 × 3 convolution layer, followed by batch nor-

malization, a ReLU non-linearity, and 2×2 max-pooling. We

use 96 filters in the first convolution layer and 128 filters each

of the proceeding convolution layers. Each linear block con-

sists of a linear layer, followed by a ReLU non-linearity. We

use width sizes of 1024, 512, and 256 for the first, second,

and third linear layer, respectively. The audio encoder con-

sists of three 512-dimensional fully-connected (or LSTMs)

layers. Finally, the mask predictor is made up of three linear

blocks, each with a width of 512. The hyper-parameters for

the audio encoder and the mask predictor are chosen based on

validation performance.

Metrics: Three metrics are used to evaluate the perfor-

mance of the audiovisual enhancers: mean absolute error

(MAE), signal-to-noise-ratio (SNR), and perceptual evalua-

tion of speech quality (PESQ). SNR is used for measuring

background noise reduction, while PESQ is used for measur-

ing perceptual speech quality [17]. We use SNR and PESQ

for measuring the performance of the enhanced reconstructed

signals at the utterance level and use MAE for measuring the

performance of the predicted IRMs at the 200ms segment

level. We use the ground-truth clean reconstructed signals as



Table 1. Enhancement performance obtained for each setup

and loss function. SNR: signal-to-noise-ratio in decibel (dB),

PESQ: perceptual evaluation of speech quality, A: Audio-

only enhancer, AV: audiovisual enhancer, FC: fully con-

nected, LSTM: Long short-term memory

Audio

Encoder
Loss

SNR PESQ

A AV A AV

FC

MSE 4.21 7.53 2.70 2.88

MAE 4.28 8.10 2.56 2.87

MAE+Cosine 4.62 8.07 2.67 2.90

LSTM

MSE 4.61 8.42 2.67 2.92

MAE 4.63 8.56 2.58 2.90

MAE+Cosine 5.17 8.87 2.73 2.95

reference when computing SNR and PESQ.

4. RESULTS AND ANALYSIS

4.1. Baseline

We seek to build a strong baseline model to be used for further

analyses. We fix the visual encoder and study how changes

to the audio encoder and the loss function affect the audio-

visual enhancement performance. For the audio encoder, we

compare the performance of the fully-connected (FC)-based

encoders to that of LSTM-based encoders. We compare three

regression-based loss functions: mean squared error (MSE),

mean absolute error (MAE), and a hybrid loss function that

combines MAE with the cosine distance.

MSE is a common loss function used in regression prob-

lems. Minimizing the MSE is equivalent to maximizing the

log-likelihood of data with a unimodal Gaussian distribution.

Upon further inspection of the distribution of the training tar-

gets, i.e., the IRMs, we find that it does not resemble a uni-

modal Gaussian. Instead, the distribution of our training tar-

gets is bimodal, with a very large peak at zero (sparse labels)

and a second smaller peak at one. The MSE solution in this

case, which is the conditional mean of the distribution, will

be between the two peaks, shifted toward the higher peak, at

zero. This results in predicting blurry masks, which is consis-

tent with observations about using the MSE loss in computer

vision applications [18].

Using the MAE loss function can mitigate some of the

limitations incurred from using the MSE loss function by

encouraging the prediction of sharper IRMs [10, 12]. One

remaining limitation with using both MSE and MAE loss

functions is the assumption that the individual components

of the IRM vector are statistically independent. To address

this limitation, we propose using a joint loss function that

combines MAE with the cosine loss function. The cosine

loss measures the distance between two entire vectors instead

of measuring the distance between individual vector com-

ponents. The cosine distance, however, cannot be used as a

standalone loss, as it minimizes the angle between two vec-

tors irrespective of their magnitudes. This can result in IRM

vectors with magnitudes beyond the masks’ boundaries, i.e.,

zero and one. Therefore, we use the following hybrid loss of

the MAE and cosine distance to optimize the angle between

the ground truth and inferred IRM vectors while bounding

their magnitude values to be between zero and one:

Lhybrid = LMAE + α Lcos

where α is a trade-off parameter that we set to 0.5 in our ex-

periments.

Table 1 gives a summary of the results obtained from our

baseline experiment. The results show that considerable gains

are achieved using an audio-only enhancer (columns labeled

A), which was not expected a priori. One reason for this is that

although the target mixture for the noisy signal was 0dB SNR,

mixtures of 1dB emerged due to short pauses in the target and

background speech. This 1dB difference between target and

background acoustic speech gives the network a clue for en-

hancing the target speaker, even without visual cues. That

said, the results show that the addition of visual cues still pro-

vides improvement in performance for all setups. The results

also show that using an LSTM-based audio encoder yields

better performance compared to FC-based encoders. Finally,

the results show that using the proposed hybrid loss function

gives improvements over using MSE for a majority of the se-

tups.

4.2. Viseme-specific Relative Improvements

In this section, we investigate whether the visual features im-

prove the speech enhancement model by simply providing it

with voice activity features, i.e., speech/silence, or by provid-

ing the model with more fine-grained information about what

is being articulated. We compare the per-viseme improve-

ments of the audio-only and audiovisual speech enhancement

models in terms of the MAE between the inferred and ground

truth IRMs. The per-viseme performance is obtained using

three steps. First, we apply an in-house ASR model to all test

utterances to estimate frame-phoneme alignments. Next, we

cluster the phonemes into visemes following the phoneme-

viseme mapping in Table 2, which is a modified version of the

mapping used in [13]. Finally, we compute the MAE between

the predicted mask and the IRM in the test set and report the

per-viseme performance.

The results in Table 2 show that the addition of visual cues

results in performance improvements for all visemes. How-

ever, these performance gains vary based on what is being ar-

ticulated. For instance, we see improvements for the viseme

/SH/, which sounds like noise acoustically but is easy to clas-

sify visually. We also see different gains for the phoneme

/m/, which is mapped to the viseme cluster /P/, and phoneme



Table 2. The phoneme-viseme mapping used in our work and

the enhancement improvements gained per viseme due to the

addition of visual cues. %∆ notes the percentage decrease in

MAE (higher is better).

Viseme cluster Viseme Phoneme %∆

Lip rounded vowels
/V1/

/aa/ /ah/ /ao/
26.6

level 1 /aw/ /er/ /oy/

Silence /SIL/ /sil/ /sp/ 25.0

Bilabial /P/ /p/ /b/ /m/ 23.1

Lip stretched vowels
/V3/

/ae/ /eh/ /ey/
20.0

level 1 /ay /y/

Palato alveolar /SH/
/sh/ /zh/ /ch/

19.0
/jh/

Alveolar semivowels /L/ /l/ /el/ /r/ 17.6

Lip rounded vowels
/V2/

/uw/ /uh/ /ow/
16.7

level 2 /w/

Velar /G/
/g/ /ng/ /k/

15.4
/hh/

Alveolar fricative /Z/ /z/ /s/ 14.3

Alveolar /T/
/t/ /d/ /n/

13.3
/en/

Dental /TH/ /th/ /dh/ 13.3

Labio-Dental /F/ /f/ /v/ 13.3

Lip stretched vowels
/V4/ /ih/ /iy/ 12.5

level 2

/n/, which is mapped to the viseme cluster /T/. Both of these

phonemes sound similar acoustically but look different visu-

ally.

4.3. Viseme Classification

In this section, we investigate if audiovisual speech enhance-

ment can be used as a self-supervised task for learning mean-

ingful visual embeddings that can be used in other visual

speech applications. Given the trained audiovisual speech

enhancement model from our previous experiment, we dis-

connect the video encoder and use it as a general feature

extractor. We use these extracted features to train a logistic

regression model for viseme classification. For training the

logistic regression model, we further split the test set used

for evaluating the audiovisual speech enhancement model

into training, validation, and test sets following a speaker-

independent 80/10/10 split rule. This approach ensures two

things: (1) the speakers used for training the enhancement

models are different from those used in our analysis; and (2)

Table 3. Viseme classification performance obtained using

visual embeddings extracted from the video encoder in the

enhancement model.

Viseme Recall (%) Viseme Recall (%)

/SIL/ 84.3 /V4/ 24.0

/SH/ 68.7 /L/ 20.6

/P/ 65.1 /TH/ 19.0

/F/ 50.0 /G/ 9.5

/Z/ 43.1 /T/ 4.2

/V1/ 39.6 Average 33.5

/V3/ 31.1 Chance 7.7

/V2/ 28.5

the logistic regression model is trained, validated, and tested

on speaker independent partitions. The C hyper-parameter of

the logistic regression model is tuned using the validation set.

The performance is evaluated in terms of recall per viseme.

Table 3 shows the viseme classification performance ob-

tained when using the visual embeddings as features for a

simple logistic regression viseme classifier. We find that the

visual embeddings are discriminative toward visemes, giving

an overall unweighted average recall of 33.5%, where 7.7%

is the chance performance. We find that our classifier pre-

dicts apparent visemes, such as /Z/, /F/, /P/, and /SH/, rela-

tively accurately compared to predicting visemes articulated

more towards the back of the mouth, such as /T/ and /G/. The

trends that we observe for viseme prediction performance us-

ing visual embeddings are similar to those observed in viseme

classification tasks. As a benchmark, we obtained an un-

weighted accuracy of 49.2% using a separate VGG-M neural

network trained from scratch specifically to detect visemes,

which suggests that our self-supervised visual features are

able to close a large proportion of the performance gap. This

demonstrates the efficacy of audiovisual speech enhancement

as a self-supervised task for learning strong visual features.

5. CONCLUSION

In this paper, we shed light on how an audiovisual speech en-

hancement model utilizes visual cues to improve the quality

and intelligibility of a target speech signal. We showed that

the performance of enhancement models varies depending on

what is being articulated. We also showed that the addition

of visual cues provides non-consistent gains in performance

depending on what is being articulated. Further, we demon-

strated the effectiveness of audiovisual speech enhancement

as a self-supervision task for learning meaningful visual em-

beddings for visual speech applications.
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