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TOPOLOGICAL VOLTERRA FILTERS

Geert Leus, Maosheng Yang, Mario Coutino, and Elvin Isufi

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, Delft, The Netherlands

ABSTRACT

To deal with high-dimensional data, graph filters have shown their
power in both graph signal processing and data science. However,
graph filters process signals exploiting only pairwise interactions be-
tween the nodes, and they are not able to exploit more complicated
topological structures. Graph Volterra models, on the other hand,
are also able to exploit relations between triplets, quadruplets and
so on. However, they have only been exploited for topology identi-
fication and are only based on one-hop relations. In this paper, we
first review graph filters and graph Volterra models and then merge
the two concepts resulting in so-called topological Volterra filters
(TVFs). TVFs process signals over multiple hops of higher-level
topological structures. First-level TVFs are basically similar to tra-
ditional graph filters, yet higher-level TVFs provide a more general
processing framework. We apply TVFs to inverse filtering and rec-
ommender systems.

Index Terms— Graph Volterra model, Graph filters, Higher-
level interactions, Graph signal processing

1. INTRODUCTION

Filters are central in signal processing and machine learning to ma-
nipulate signals and extract patterns. When these signals reside in
irregular and complex spaces, such as networks, e.g., social, biologi-
cal, and financial networks, conventional filtering techniques cannot
be applied anymore [1]. In these instances, filtering tools capable
of leveraging the signal-topology coupling are necessary. Such tools
have recently been developed in the field of graph signal processing
(GSP) and they are known under the term graph filters [1, 2].

Graph filters process the signal by manipulating its variability
w.r.t. pairwise relationships encoded in the graph edges. This has
been widely studied from both the graph vertex and graph spec-
tral domain in recent years [2, 3, 4]. There are different ways of
implementing a graph filter as an interaction between the graph
nodes, with the most popular ones including the finite impulse re-
sponse (FIR) graph filters [3, 4], the autoregressive moving average
(ARMA) graph filters [5], as well as their node-varying [6] and edge-
varying [7, 8] counterparts. All these implementations are based on
nodes aggregating local information from their neighbors, poten-
tially improving their expressive power by differently weighting
the aggregation per node or the information coming from different
neighbors. Nonlinear graph filters have also been proposed, such
as median graph filters [9] or graph filters living in a reproducing
kernel Hilbert space [10].

M. Yang is supported by the AIDU program at the Delft University
of Technology in the Aidrolab call. Mario Coutino is partially supported
by CONACYT. E-mails: {g.j.t.leus; m.yang-2; m.a.coutinominguez; e.isufi-
1}@tudelft.nl

The common aspect of current graph filter implementations is
that they process the signal by leveraging only pairwise relationships
between the nodes. However, pairwise representations are often in-
sufficient to capture the irregular structure that is often present in
data. Therefore, in [11, 12, 13, 14, 15, 16], signals defined over
a topological space, i.e., a set of points along with a set of neigh-
borhood relations, are analyzed. For instance, in co-authorship net-
works, many papers are written by more than two authors and hence
just considering pairs of authors does not provide enough informa-
tion [17]; or in social networks, pairwise friend relationships are not
able to identify the group relationship structure [18]. In these situa-
tions, higher-level topological relations, such as proximity between
nodes and groups of nodes (tuples), are needed to extract relevant in-
formation from the signal-topology coupling. From this perspective,
conventional FIR graph filters can be seen as topological filters of
level one; i.e., working only with pairwise topological information.

Altogether, the above works build up towards the extension of
graph filters to topological spaces. To successfully process these
signals there is the need to extract two types of information from
the data: i) the incidence matrices at the different topological lev-
els; and ii) the topological signals on each level, both of which are
open research directions. In many applications, the topological in-
formation is directly visible in the data, e.g., in co-authorship or so-
cial networks, the groups that interact and how strong they interact
can be determined. Alternatively, it can be estimated from topolog-
ical signals that might be available at different levels, by exploit-
ing the signal-topology coupling. This is similar to the works that
build a graph (i.e., pairwise relationships) from signals that are avail-
able at the node level [19, 20]. An example of such a higher-level
topology inference approach relies on the so-called graph Volterra
model [21, 22]. This approach is also based on node-level signals
and attempts to explain the signal value on one node by a superposi-
tion of linear, quadratic, cubic, etc. combinations of the signal val-
ues on the other nodes. The trained Volterra kernels then reveal the
topological information at the different levels. Approaches that also
exploit higher-level topological signals remain limited since such in-
formation is often not available.

The kernels of a graph Volterra model describe how a specific
node is connected to individual nodes, pairs of nodes, triplets of
nodes, etc. Viewing these relations as one-hop connections, we aim
to answer how to extend such one-hop connections to a processing
platform that can filter a node-level signal over multiple hops of a
topological structure. The answer will be provided by the so-called
topological Volterra filter (TVF), which extends traditional graph fil-
ters i) by processing node-level signals not only over multiple hops
of pairwise connections, but also over multiple hops of higher-level
interactions, and ii) by introducing nonlinear combinations of the
node-level signal values to define higher-level signal values. We
show the potential of TVFs in solving a simple inverse problem on a
graph and for rating prediction in recommender systems.
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2. PRELIMINARIES

2.1. Graph Signal Processing

GSP relies on the assumption that data lives in an irregular domain
described by a graph G = {V, E}, where V = {1, . . . , N} and
E ⊆ V × V are the vertex (node) and edge set, respectively. We can
then associate to each node i ∈ V the datum xi and collect them all
in the vector x ∈ RN , which is called a graph signal. The graph
wherein the data is defined is typically represented by the so-called
graph shift operator (GSO) [3], which is an N × N matrix S that
captures the graph structure; that is, the entries [S]i,j for i 6= j are
nonzero only if node j is connected to node i by an edge. Typical
choices for the GSO are the (weighted) adjacency matrix W and the
graph Laplacian L as they provide a natural way to extend the notion
of frequencies to graphs [3, 4].

Similar to traditional signal processing, the workhorse of GSP is
graph filtering [2, 3, 4]. The most common graph filters are linear
operators that process the graph signal. They can be represented by
means of a polynomial of the GSO of order K, i.e.,

y =

K∑
k=0

hkS
kx, (1)

with scalar coefficients h0, . . . , hK . Graph filters have found suc-
cess in several applications such as anomaly detection in sensor net-
works, data classification [4], and high-dimensional data denoising
[2], to name a few. However, structures of the form (1) only exploit
the pairwise relationships between the nodes encoded by the edges
of the graph, but not any higher-level connections such as triplets or
quadruples of nodes that interact.

2.2. Graph Volterra Models

A model that addresses higher-level topological interactions is the
graph Volterra model, which was introduced in [21, 22]. Every value
of the graph signal (also called a node-level signal in this context) for
a particular node is then expressed as a function of the signal values
on all the nodes that are involved in higher-level interactions with
that node. More specifically, similar to a Volterra series, the signal
value of node i is expressed as a linear combination of terms at dif-
ferent topological levels. At level p, if node i is involved in a (p+1)-
tuple together with nodes (j1, j2, . . . , jp), one of the terms will be
the product of the signal values at these nodes, i.e., xj1xj2 . . . xjp ,
thereby implicitly introducing some higher-level topological signal.
Considering then a scalar offset si,0 ∈ R relative to node i and a vec-
tor si,p ∈ RNp×1 describing the influence of all p-tuples of nodes
on node i, for p = 1, 2, . . . , P , we can express the signal value xi

of node i as

xi = si,0 +

P∑
p=1

s>i,px
⊗p, (2)

where we define the Kronecker product powers x⊗(p) = x⊗(p−1)⊗
x with x⊗1 = x and ⊗ the Kronecker product. We call (2) a P th-
level graph Volterra model as it accounts for the influence of at most
P -tuples. By stacking the xis of all nodes, we obtain

x = s0 +

P∑
p=1

Spx
⊗p, (3)

where [s0]i = si,0 and [Sp]i,: = s>i,p. Here s0 is the global offset
signal and Sp describes how every p-tuple of nodes influences every

Fig. 1. Illustration of first-level GSO S1 for a set of 5 active pairwise
interactions (in black), i.e., (1, 2), (1, 3), (2, 3), (2, 4), and (3, 4).
Thus, node 1 is connected to the nodes 2 and 3 (in blue).

Fig. 2. Illustration of second-level GSO S2 for a set of 2 active
triplets (in black), i.e., (1, 2, 3) and (1, 2, 4). Thus, node 1 is con-
nected to the pairs (2, 3), (3, 2), (2, 4), and (4, 2) (in blue).

individual node because together they form a (p+1)-tuple. As such,
S1 ∈ RN×N connects nodes to nodes and thus could play the role
of the traditional GSO. We label this here as a first-level GSO, since
similarly Sp ∈ RN×Np

connects p-tuples with nodes and can be
viewed as a pth-level GSO. An example illustrating the structure of
S1 and S2 is shown in Figures 1 and 2, respectively. Following the
hypergraph literature, we can basically use Sp to encode hyperedges
of size p + 1. Also note that not all p-tuples of an active (p + 1)-
tuple should be active as in simplicial complexes. Such topological
constraints can be included, but are not required here.

Graph Volterra models are self-driven, i.e., in contrast to (1)
both the input and output are based on the signal x, and have been
successfully used to identify higher-level interactions from data [21,
22]. However, the identified connections between p-tuples and nodes
only describe one-hop connections.

3. TOPOLOGICAL VOLTERRA FILTERS

In this section, we merge graph filters and graph Volterra models,
leading to a processing framework for node-level signals that we re-
fer to as a topological Volterra filter (TVF). On one hand, a TVF will
extend graph filters from a multi-hop processing tool that exploits
only pairwise connections to one that also considers higher-level in-
teractions. On the other hand, a TVF will extend graph Volterra mod-
els from a higher-level topology identification tool inferring only
one-hop connections to a higher-level processing tool exploiting also
multi-hop connections. We will present the TVF in different steps,
by looking at every term of the Volterra model separately.
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Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 12:39:04 UTC from IEEE Xplore.  Restrictions apply. 



3.1. First-Level Topological Volterra Filter

Let us rewrite the first-level term of the graph Volterra model as an
input-output model:

y = S1x, (4)

where the first-level GSO S1 ∈ RN×N describes the pairwise rela-
tionships between all nodes. This model can be viewed as a one-hop
diffusion exploiting the node-node interactions defined by S1. Ex-
tending this to multiple hops (higher-order filter) we can basically
use the fact that Sk

1 describes the node-node interactions through k
hops in S1. As a result, we can extend (4) to a higher-order filter as

y =

K∑
k=0

hkS
k
1x, (5)

which is labeled as a first-level TVF and which compared to (1) boils
down to a traditional graph filter in S1.

3.2. Second-Level Topological Volterra Filter

Let us likewise rewrite the second-level term of the graph Volterra
model as an input-output model:

y = S2x
⊗2, (6)

where the second-level GSO S2 ∈ RN×N2

describes the relation-
ships of all node pairs with all individual nodes. This model can be
viewed as a one-hop diffusion exploiting the pair-node interactions
defined by S2. Extending this to multiple hops (higher-order filter)
requires a description of all pair-node interactions over multiple hops
given the one-hop interactions defined by S1 and S2.

To realize that, observe that if S1 describes the one-hop node-
node interactions in S1, then S1 ⊗ S1 describes the one-hop pair-
pair interactions in S1. Similarly, if Sl

1 describes the node-node
interactions through l hops in S1, then Sl1

1 ⊗Sl2
1 describes the pair-

pair interactions through l1 hops in S1 for one node and l2 hops in
S1 for the other node. Considering the above, multi-hop pair-node
interactions given S1 and S2 can be represented by Sk

1S2(S
l1
1 ⊗

Sl2
1 ) as illustrated in Figure 3. This operation concatenates three

types of interactions: i) the pair-pair interactions through l1 hops
in S1 for one node and l2 hops in S1 for the other node, ii) the
pair-node interactions defined by S2, and finally iii) the node-node
interactions through k hops in again S1. This allows us to extend (6)
to a higher-order filter as

y =

K∑
k=0

L1,L2∑
l1,l2=0

hk,l1,l2S
k
1S2(S

l1
1 ⊗ Sl2

1 )x⊗2 (7)

which combined with (5) is labeled as a second-level TVF.

3.3. Higher-Level Graph Filters

Applying the same reasoning for higher levels, we basically need
a description of all (P -tuple)-node interactions over multiple hops
given the one-hop interactions defined by S1,S2, . . . ,SP . Sim-
ilar to the second-level TVF, such a description is provided by
Sk

1SP (S
l1
1 ⊗ · · · ⊗ SlP

1 ) which is similar to Figure 3 yet with the
pair-node interaction replaced by a (P -tuple)-node interaction. This
would lead to a filter of the form

y =

K∑
k=0

L1,...,LP∑
l1,...,lP=0

hk,l1,...,lP S
k
1SP (S

l1
1 ⊗ · · · ⊗ SlP

1 )x⊗P , (8)

Fig. 3. Illustration of the general multi-hop pair-node interaction
given the first- and second-level GSOs S1 and S2. This interaction
can be described by Sk

1S2(S
l1
1 ⊗ Sl2

1 ).

which combined with the related lower-level terms is labeled as a
P th-level TVF.

However, in contrast to the second-level TVF, there are more
paths to connect a P -tuple to a single node over multiple hops when
P > 2. For instance, triplet-node interactions over multiple hops
can be described by Sk

1S3(S
l1
1 ⊗ Sl2

1 ⊗ Sl3
1 ) but alternative paths

are obtained by Sk
1S2(S

m1
1 ⊗S

m2
1 )(I⊗S2)(S

l1
1 ⊗S

l2
1 ⊗S

l3
1 ). This

term actually describes a concatenation of five types of interactions:
i) the triplet-triplet interactions through l1 hops in S1 for the first
node, l2 hops in S1 for the second node, and l3 hops in S1 for the
third node, ii) the pair-node interactions defined by S2 for one pair
of nodes not processing the other node, iii) the pair-pair interactions
through m1 hops in S1 for one node and m2 hops in S1 for the other
node, iv) the pair-node interactions defined by S2 and finally v) the
node-node interactions through k hops in S1. Higher-level TVFs can
be defined by taking also such interactions into account. However,
since this becomes rather complicated, we will restrict ourselves to
higher-level TVFs of the form (8). Note hereby that the filtering
operation in (8) [and thus also the one in (7)] can be rewritten using
(Sl1

1 ⊗ · · · ⊗ SlP
1 )x⊗P = Sl1

1 x⊗ · · · ⊗ SlP
1 x.

4. NUMERICAL EXPERIMENTS

We corroborate the performance of a TVF for solving an inverse
problem on a synthetic graph and for rating prediction with the
MovieLens100K dataset [23].

4.1. Synthetic Data

We consider a 2nd-level TVF [cf. (5) and (7)] for graph inverse filter-
ing and compare it with a 1st-level TVF [cf. (5)], e.g., a graph filter.
We generate a 50−node sensor graph using the GSPBOX [24] whose
adjacency matrix is used also as 1st-level GSO S1. To build the 2nd-
level GSO S2, we set the entry connecting node i with the pair (j, k)
to [S2]i,(j,k) = 1 iff [S1]i,j = 1, [S1]i,k = 1 and [S1]j,k = 1,
i.e., the triplet (i, j, k) is active. We generated 100 graph signals as
training data based on a model y = f(x) and 100 test signals to
compute the RMSE of estimating the signal x by inverse filtering
y. Since TVFs are linear in the filter coefficients, we used (regular-
ized) least-squares to estimate the latter [25]. For the 1st-level TVF
we consider filter orders K = {0, . . . , 16} while for the 2nd-level
TVF we only report results for K = {0, 1, 2, 3}, L1, L2 = {0, 1, 2}
due to space constraints. Note that for the 2nd-level TVF we use the
same K in both (5) and (7).

1st-level forward model. We first consider a 1st-level forward
model:

y = 0.2x+ 0.3S1x+ 0.01n, (9)
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Table 1. RMSE of 2nd-level TVF in inverse filtering of model (9),
where row and column indices of each subtable are L1 and L2.

K = 0, L1, L2 = {0, 1, 2} K = 1, L1, L2 = {0, 1, 2}
0.58 0.58 0.57 0.43 0.43 0.43
0.58 0.57 0.57 0.43 0.43 0.43
0.58 0.57 0.56 0.43 0.43 0.43
K = 2, L1, L2 = {0, 1, 2} K = 3, L1, L2 = {0, 1, 2}
0.43 0.43 0.42 0.43 0.43 0.43
0.43 0.42 0.42 0.43 0.42 0.42
0.43 0.42 0.42 0.43 0.42 0.42

Table 2. RMSE of 2nd-level TVF in inverse filtering of model (10),
where row and column indices of each subtable are L1 and L2.

K = 0, L1, L2 = {0, 1, 2} K = 1, L1, L2 = {0, 1, 2}
1.06 1.04 1.01 0.96 0.91 0.88
1.06 1.03 0.98 0.97 0.87 0.83
1.06 1.03 0.97 0.96 0.87 0.81
K = 2, L1, L2 = {0, 1, 2} K = 3, L1, L2 = {0, 1, 2}
0.82 0.79 0.76 0.80 0.76 0.74
0.82 0.76 0.73 0.80 0.74 0.70
0.82 0.76 0.72 0.80 0.74 0.68

where x = 1, i.e., the all-one vector, and n follows a Gaussian
distribution. For the 1st-level TVF, as the number of filter taps in-
creases, the RMSE reduces, but it saturates at 0.75 (not shown).
However, from Table 1, we observe that with a 2nd-level TVF, we
can break this limit and obtain a smaller RMSE of 0.42 (44% im-
provement). It shows that a 2nd-level TVF can do much better than
a 1st-level TVF, i.e., a conventional graph filter, in dealing with FIR
modeled graph signals.
2nd-level forward model. We then generate the data following a
2n-level forward model:

y = 0.05n+ 0.2x+ 0.3S1x+ 0.5S2
1x+ S1S2(0.2(x⊗ x)

+ 0.3(S1x⊗ x) + 0.3(S1x⊗ S1x) + 0.2(S2
1x⊗ x)), (10)

where x and n are defined as before. The RMSE of the 1st-level
TVF fluctuates around 2.65 when K increases, and it reaches a lower
bound of RMSE = 2.62 (not shown). If we contrast the latter with a
2nd-level TVF, we can see from Table 2 that the RMSE can be low-
ered by 74.1% via exploiting the relationships between node pairs
and individual nodes.
2nd-level AR forward model. Finally, we generate the data with an
AR-type 2nd-level forward model:

y = x+ 0.3S1S2(y ⊗ y) + 0.6S2(y ⊗ S1y). (11)

where we set y = 1 and obtain x from (11). The least-squares solu-
tion for the 2nd-level TVF coefficients will be h0,0,0 = 1, h1,0,0 =
−0.3, h0,0,1 = −0.6 and the signal x can be perfectly recovered.
For the 1st-level TVF this is never the case and the achieved mini-
mum error is RMSE= 1.64. From Table 3, we observe that as long
as K ≥ 1, L1 ≥ 0, L2 ≥ 1, we can achieve a perfect inverse filter-
ing with a 2nd-level TVF.

4.2. Application: Recommender Systems

We also applied the 2nd-level TVF for rating prediction in recom-
mender systems using the MovieLens100K dataset. We compare

Table 3. RMSE of 2nd-level TVF in inverse filtering of model (11),
where row and column indices of each subtable are L1 and L2.

K = 0, L1, L2 = {0, 1, 2} K = 1, L1, L2 = {0, 1, 2}
1.16 0.40 0.38 0.37 0 0
1.16 0.39 0.36 0.37 0 0
1.16 0.39 0.36 0.37 0 0
K = 2, L1, L2 = {0, 1, 2} K = 3, L1, L2 = {0, 1, 2}
0.16 0 0 0.15 0 0
0.16 0 0 0.15 0 0
0.16 0 0 0.15 0 0

Table 4. RMSE of 2nd-level TVF in rating prediction, where K1 is
the number of hops in the 1st-level TVF, K2 in the 2nd-level TVF.

K1
2nd-level TVF with K2 = 2, (L1, L2) 1st-level TVF

(0, 0) (1, 0) (2, 0) (2, 1) (3, 1)
1 0.769 0.764 0.762 0.760 0.760 0.801
2 0.752 0.746 0.746 0.743 0.743 0.796
3 0.752 0.747 0.746 0.744 0.743 0.796
4 0.752 0.747 0.746 0.744 0.743 0.796
5 0.752 0.747 0.746 0.743 0.743 0.796
6 0.753 0.746 0.746 0.743 0.743 0.796

the 2nd-level TVF with the item-based multi-hop graph collabora-
tive filtering (1st-level TVF) in [26, Eq. 20]. We considered the first
4646 ratings from 150 users and 200 movies with 4546 ratings for
training and 100 for testing. Matrix S1 is an item similarity graph
constructed from the training set following [26, Eq. 6]. We built the
2nd-level GSO as in the synthetic experiments. If triplet (i, j, k) is
active, we set [S2]i,(j,k) = 0.5([S1](i,j) + [S1](i,k)). Ratings are
predicted by a 1st- and 2nd-level TVF collaborative filter (replacing
the FIR filter in [26, Eq. 20] by a 2nd-level TVF) for the results
reported in Table 4.

We observe that for both filters, as the number of filter taps in-
creases, the rating prediction becomes better (since we round the val-
ues to 3 digits after the decimal, it is not visible after K1 > 2). But
after a certain number of hops, the 1st-level TVF, i.e., the method
in [26], is not able to further improve the prediction performance.
However, a 2nd-level TVF can reduce the RMSE beyond this limit,
even when K2, L1, L2 are small (all under 3). This is because extra
information between one movie and a pair of movies is explored by
a 2nd-level TVF in the prediction.

5. CONCLUSIONS

In this paper, we have proposed topological Volterra filters (TVFs).
TVFs generalize traditional graph filters to capture also the influence
of higher-level interactions and they generalize graph Volterra mod-
els to capture also multi-hop interactions. TVFs are built follow-
ing the principles of their temporal counterparts by accounting for
higher-level topological connections, and consequently, they present
themselves as a nonlinear model to process and represent graph sig-
nals. An interesting feature of TVFs is that they are linear in the fil-
ter coefficients, thus allowing for a simple least-squares design. We
have showcased the performance of TVFs for solving inverse prob-
lems on graphs and for rating prediction in recommender systems.
Future research will be principally based on providing a spectral
analysis for TVFs and corroborating their benefits for more appli-
cations.
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