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ABSTRACT 
 

In this paper, we propose a novel super-resolution and 

infection edge detection co-guided learning network for 

COVID-19 CT segmentation (CogSeg). Our CogSeg is a 

coherent framework consisting of two branches.  Specifically, 

we use image super-resolution (SR) as an auxiliary task, 

which assist segmentation to recover high-resolution 

representations. Moreover, we propose an infection edge 

detection guided region mutual information (RMI) loss, 

which uses the edge detection results of segmentation to 

explicitly maintain the high order consistency between 

segmentation prediction and ground truth around infection 

edge pixels. Our CogSeg network can effectively maintain 

high-resolution representation and leverages edge details to 

improve the segmentation performance. When evaluated on 

two publicly available COVID-19 CT datasets, our CogSeg 

improves 10.63 and 13.02 points than the established 

baseline method (i.e. U-Net) w.t.r mIoU. Moreover, our 

CogSeg achieves more appealing results both quantitatively 

and qualitatively than the state-of-the-art methods. 
 

Index Terms— COVID-19, Computed Tomography 

(CT); segmentation, Super-Resolution (SR), edge detection 
 

1. INTRODUCTION 
 

The rapid spread of COVID-19 has seriously threatened 

global health. Accurate and rapid testing is extremely vital 

for timely prevention of COVID-19 spread. As a basic but 

challenging task of the diagnostic framework, segmentation 

of the infection lesions from CT scans plays a crucial role 

for quantitative measurement of the disease progression in 

accurate diagnosis and follow-up assessment [1]. 

Recently, deep learning (DL) has penetrated into the 

field of medical imaging and has a good development [1-4], 

which brings unique benefits to the automated segmentation 

of medical images. U-Net [4] is the most widely used 

encoder-decoder deep network architecture and work 

decently well for medical image segmentation. Subsequently, 

some variants of U-Net [5-7] are also proposed to improve 

the performance for segmentation of different organs. For 

COVID-19, some DL-based methods [1,8,9] have been 

proposed to detect patients infected via radiological imaging 

to provide assistance in diagnosis, but there are only a few 

works [10-12] related COVID-19 CT infection segmentation 

with deep learning, which remains under explored and is still 

a challenging task. On the other hand, high resolution 

representations and edge information are two important 

factors for CT segmentation, but they are ignored in current 

methods. 

In this paper, we propose a super-resolution and 

infection edge detection co-guided learning network for 

COVID-19 CT segmentation (CogSeg). Our contributions 

are threefold. 1) We integrate SR learning into COVID-19 

CT segmentation network based on U-Net encoder-decoder 

backbone, which makes full use of the fine-grained 

structural information recovered from SR learning to 

facilitate CT segmentation. 2) Considering the high 

correlations between segmentation and infection edge, we 

use the latter one as an auxiliary task, and allow it provide 

explicit guidance to assist CT segmentation. The guidance is 

built by developing an infection edge detection guided RMI 

loss to constrain segmentation predictions around infection 

edge regions. 3) The experiments on two open-access 

COVID-19 CT datasets show that our CogSeg outperforms 

other state-of-the-art segmentation methods and yields more 

precise predictions. 
 

2. RELATED WORK 
 

2.1. Medical Image Segmentation 
 

Driven by the rapid development of convolutional neural 

networks (CNNs), FCNs [13,14], DeepLabs [15], DSRL [16] 

and HRNet [17] based methods have dominated majority of 

this field. For medical image segmentation, Ronneberger et 

al. [4] propose a well-known U-Net architecture. SegNet [18] 

makes careful designs to improve the U-Net. Li et al. [5] 

propose an H-DenseUNet to efficiently extract intra-slice 

features for liver and tumor segmentation. Attention U-Net 

[6,19] improves U-Net by using the attention mechanism to 

learn to focus on target structures. U-Net++ [7] improves U-

Net by introducing a series of nested, dense skip 

connections between the encoder and decoder sub-networks. 

Due to the fast progression and infectious ability of 

COVID-19 that have never appeared before, there has only a 

few works related CT segmentation with deep learning. 

Currently, Zhou et al. [10] propose a machine-agnostic 

method that can segment and quantify the infection regions
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Figure 1: The architecture of our CogSeg. It consists of two branches, which are used in training phase, and only segmentation is conducted in test phase. The 

encoders are shared between SR and segmentation. The architecture will be optimized with four terms: MSE loss for SR, CE loss for segmentation, L1 loss for 

correlation learning of spatial dimension between output of decoder for segmentation and output of decoder for SR, and edge detection guided RMI loss. 

on CT scans. Fan et al. [11] propose an Inf-Net, which 

utilizes an implicit reverse attention and a semi-supervised 

solution to improve the identification of infected regions. 

Chen et al. [12] propose a residual attention U-Net for 

automated segmentation of COVID-19 chest CT images.  

Actually, edge information can help improve the 

segmentation performance, which has not been paid 

attention to in previous works. To this end, we exploit an 

edge guided loss function to address this issue in this work. 
 

2.2. Image Super-Resolution 
 

Recently, CNNs have indicated that they can provide 

remarkable performance in the SR problem. Dong et al. [20] 

proposed the first CNNs-based SRCNN. Since then, many 

CNNs-based SR versions are proposed; the networks are 

tend to be deeper and deeper from the SRCNN to deeper 

VDSR [21] and Memnet [22], etc., and then to the very deep 

RCAN [23]. Furthermore, other effective methods construct 

the entire network by connecting a series of identical feature 

extraction modules such as RDN [24] and MSRN [25], 

indicating the capability of each block plays a crucial role. In 

addition, some deep learning based medical image SR 

methods [26-28] are well developed. However, they only 

reconstruct high-resolution images, and do not pay attention 

to whether the reconstructed medical images are useful for 

high-level tasks such as semantic segmentation. 

In this work, we employ U-Net as SR backbone, which 

aims to be the same as network structure of segmentation to 

guide the correlation learning of spatial dimension, thus 

benefiting the segmentation task. 
 

3. PROPOSED METHOD 
 

3.1. Overview 
 

As shown in Figure 1, our CogSeg framework consists of 

two branches: SR and segmentation. We treat segmentation 

as the main task, and SR learning as auxiliary task. SR 

branch is optimized with reconstruction supervision during 

training, and it will be freely removed from the network in 

the inference stage, thus causing cost-free overhead. We 

define the overall learning objective function as: 

 
4

1 2 3 41
1 ,Egde

tatal CE MSE RMIi
L L L L i L   


               (1) 

where 
1 , 

2 , 
3  and 

4  are weighting parameters to 

balance four losses. 
CEL  and 

MSEL  are the conventional multi-

class Cross-Entropy (CE) loss for segmentation [4] and 

Mean Squared Error (MSE) loss for SR [20], respectively. 

We choose L1 loss function [25] for correlation learning of 

spatial dimension between output of decoder for 

segmentation and output of decoder for SR. In Eq. (1), the 

weights of segmentation task have greater values and bring 

larger gradients when training; while L1 loss has a smaller 

gradient, which is equivalent to providing high-resolution 

clues for segmentation branch.  1L i  is the i-th L1 loss of 

the four L1 losses, defined as follows: 
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              (2) 

where N means the pixel number, Ci denotes the number of 

feature maps generated by the i-th decoder.  ,ic jG X  and 

 ,ic jG Y  refer the Ci feature maps generated by the i-th 

decoders of SR and segmentation, respectively. Moreover, 
Edge

RMIL  indicates our infection edge detection guided RMI loss, 

which will be further described in Section 3.3. We minimize 

the whole objective function end-to-end.  
 

3.2. SR Guided Learning for CT Segmentation 
 

For semantic segmentation, current most of state-of-the-art 

methods [4,15,29] often subsample the original image and 

the corresponding ground truth, and then rescaling to the 

size of the original image in the post-processing stage. This 

may result in the loss of effective label information due to 
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subsampled ground truth. Besides, they also suffer from 

another common disadvantage; that is, recovering high-

resolution features via the decoder module is difficult to 
recover the original details. Because the decoder is either a 

bilinear upsampling layer or a simple sub-network, it will 

not bring any additional information since the input is in a 

subsampled low-resolution. So, only relying on the decoder 

module is not enough to recover high-resolution feature 

representation. 

There are still such problems for COVID-19 CT seg-

mentation. To improve the performance of CT segmentation, 

we integrate SR learning with segmentation, which apply the 

high-resolution features recovered from SR to guide the 

learning of high-resolution representations of segmentation 

and enable the segmentation framework to achieve 

comparable performance with low computational cost. 

Specifically, we employ the same U-Net encoder-decoder 

architectures as SR backbone and segmentation backbone as 

shown in Figure 1, which aims to guide the correlation 

learning of spatial dimension between output of decoder for 

segmentation and output of decoder for SR as shown the L1 

loss optimization between the green feature maps and orange 

feature maps in Figure 1. The details can be modeled by the 

relationships between internal pixels, making up for the 

simple design of the decoder. Our network starts with two 

encoders with shared weights, which aims at learning the 

task-independent representations for SR and segmentation, 

simultaneously.  And then, we use two decoders to learn 

task-dependent representations for two tasks, respectively. 

At the end of SR decoder, we apply one 1×1 convolutional 

layer to reconstruct high-resolution image, while at the end 

of segmentation decoder, we apply one 1×1 convolutional 

layer and one soft max layer to predict a probability 

distribution for each pixel. Specifically, we use additional 

supervision at different scales of decoder to produce an 

amplified output for two tasks, e.g., taking an input of 

256×256, and generating an output of 512×512. In brief, we 

leverage SR representation to assist segmentation. 
 

3.3. Infection Edge Detection Guided RMI Loss 
 

The CE loss is most commonly used in semantic 

segmentation learning. But it ignores the relationship among 

pixels in a local region of the image. Actually, there are 

strong dependencies among pixels and these dependencies 

represent the structure of objects. To solve this issue, we 

introduce the region mutual information (RMI) loss [30] to 

model the dependencies among pixels efficiently. When 

observing the CT segmentation maps, we find that most 

infection regions exhibit flat texture, and only those regions 

around the boundaries show distinct structures. Based on 

this observation, we propose an infection edge detection 

guided RMI loss for COVID-19 CT segmentation. 

Intuitively, as  show  in  Figure 2,  given  the  infection  edge 
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Figure 2 Illustration of the infection edge detection guided RMI loss (R=3).  
 

detection maps that always obtained by segmentation 

prediction itself, for each boundary pixel, we define a square 

window centered with it; we map this local window to the 

segmentation prediction and ground truth maps, and collect 

the pixel values inside the window, generating two 

distributions; finally, we maximize the similarity between 

the two distributions. Specifically, if the size of square 

region is R×R, then d=R×R, we can get multivariate random 

variables   1 2= , , ... , dP p p p  from CT segmentation predictions 

and  1 2= , , ... , dY y y y  from ground truth. Following [30], we 

maximize the lower bound of mutual information between 

their multivariate distributions. Suppose the variables of 

arbitrary pixels and boundary pixels are P1 and P2, 

respectively. Then, the infection edge detection guided RMI 

(Edge-RMI) loss can be formulated as 

  
 

  
 1 2

, ,

| |
3 5

1 1

1 1
= log det +log det ,

2

B E
Egde b e b e

RMI Y P Y P
R R

b e

L
B  

 

 
   

 
   (3) 

where B denotes the number of images in a mini-batch, E is 

the number of semantic categories, det(
.
) is the determinant 

of the matrix, and 
|Y P  is the posterior covariance matrix of 

Y, given P. Since the number of edge pixels is small, we add 

a full image RMI loss to provide a more comprehensive 

constraint over local structures. 
 

4. EXPERIMENTS 
 

4.1. Datasets 
 

We evaluate our CogSeg on two open-access COVID-19 CT 

segmentation datasets [31], referred to as COVID-19_1/2. 

COVID-19_1 includes 100 axial CT images from 60 patients, 

including three labels: ground-glass opacities, consolidation 

and pleural effusion [32]. 70% samples are selected as 

training set, and the rest is as test set. COVID-19_2 contains 

9 volumes, total 829 slices, where 373 slices have lesions 

and been labeled by radiologists. The first 6 volumes are 

defined as the training set, and the rest is as the test set. 
 

4.2. Implementation details 
 

We implement CogSeg in PyTorch. All models are trained 

from scratch on two NVIDIA 2080Ti GPUs. We use ADAM 

optimizer to train our model and follow the training details
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Table 3 Comparison with state-of-the-art methods. Bold indicates the best results; underline indicates the second best results. 

Datasets Metrics 
Methods 

U-Net U-Net++ Attention U-Net H-DenseUNet FCN-8s DeepLabv2 HRNet CogSeg (Ours) 

COVID-19_1 

mIoU 79.12 84.21 83.72 83.94 83.12 85.98 87.56 89.75 

DSC 73.35 77.24 75.45 74.78 75.15 77.55 80.35 83.04 

Sens. 80.36 83.53 83.84 82.65 83.41 83.52 85.77 86.98 

Spec. 95.83 96.56 96.86 96.29 96.66 96.46 97.18 98.09 

COVID-19_2 

mIoU 60.44 68.35 68.98 67.93 68.24 68.45 71.54 73.46 

DSC 57.35 66.72 67.85 63.32 67.47 67.69 70.02 72.43 

Sens. 66.98 75.779 76.36 74.66 75.15 76.28 77.23 79.32 

Spec. 94.67 96.78 97.05 96.75 96.59 97.44 97.65 98.16 
 

Table 1 The effectiveness of SR. 

Datasets Methods 
Metrics (%) 

mIoU DSC Sens. Spec. 

COVID-

19_1 

U-Net (Baseline) 79.12 73.35 80.36 95.83 

+SR with 1 L1 loss 85.03 77.46 83.78 96.14 

+SR with 4 L1 losses 86.24 78.89 84.63 96.65 

COVID-

19_2 

U-Net (Baseline) 60.44 57.35 66.98 94.67 

+SR with 1 L1 loss 67.81 66.84 73.84 96.16 

+SR with 4 L1 losses 69.96 68.52 75.47 96.88 

Table 2 Influence of loss functions. 

Datasets Loss 
Metrics (%) 

mIoU DSC Sens. Spec. 

COVID-19_1 

CE (Baseline) 86.24 78.89 84.63 96.65 

+RMI 87.45 80.67 85.16 97.33 

+Edge-RMI (ours) 89.75 83.04 86.98 98.09 

COVID-19_2 

CE (Baseline) 69.96 68.52 75.47 96.88 

+RMI 71.02 70.15 77.21 97.43 

+Edge-RMI (ours) 73.46 72.43 79.32 98.16 
 

of U-Net [4]. The initial learning rate is set to 0.0001 for all 

layers and decreased by half after every 50 epochs. Our 

model converges after 250 epochs. For our joint loss 

function, we set the weight of each term as 
1=1 , 

2 =0.5 , 

3 =0.5  and 
4 =0.5  in Eq. (1). We set R{3,5} as shown 

in Eq. (3). For COVID-19_1, consider about the size of the 

dataset is small, data augmentation is necessary for training 

the neural network to achieve high generalizability [21,22]. 

We rotate the existing images and the corresponding masks 

45◦, 90◦, 135◦, 180◦, 270◦ and 360◦ to generate another 600 

examples. Besides, we scale the image to 0.5, 0.75, 1.25 and 

1.5 separately to generate another 400 images and its 

corresponding masks.  
 

4.3. Ablation Study 
 

Effectiveness of SR. Following [33], we use four widely 

adopted metrics, i.e., Mean Intersection over Union (mIoU), 

Dice Similarity Coefficient (DSC), Sensitivity (Sens.), and 

Specificity (Spec.). As shown in Table 1, the performance 

can be improved while adding the SR with 1 L1 loss and 4 

L1 losses of Eq. (1) into segmentation, thus indicating that 

transferring the structure information between SR and 

segmentation is necessary.  

Influence of Learning Objectives. The evaluation of different 

learning objectives is shown in Table 2. Compared to the 

baseline  only  using  CE  loss and additional  RMI  loss, we 

Original 

CT images
GT

U-Net 

(Baseline)
HRNet

Ours

(Baseline+SR)

Ours

(Baseline+SR+Edge)

Ground-glass opacities Pleural effusionConsolidation

 
Figure 3 Visualization of infection segmentation results produced by state-

of-the-art methods and our method.  

obtain improvement by adding our Edge-RMI loss. This gain 

is mainly due to more accurate predictions around the 

boundary regions between semantic parts.  
 

4.4. Comparisons with the State-of-the-arts 
 

We compare our CogSeg with U-Net [4], U-Net++ [7], 

Attention U-Net [6], H-DenseUNet [5], FCN-8s [14], 

DeepLabv2 [15] and HRNet [17]. Quantitative results are 

shown in Table 3. As can be seen, the proposed CogSeg 

outperforms other methods in terms of four metrics. We 

attribute this improvement to the integration of SR in 

segmentation and the attention of edge regions. In addition, 

we show some qualitative results in Figure 3, in which our 

method yields more precise predictions, while other two 

methods, especially U-Net, loss components and lead to 

wrong classification. 
 

5. CONCLUSION 
 

In this work, we investigate the task of COVID-19 CT 

segmentation from two aspects: high-resolution 

representations and infection edge detection guidance. 

Specifically, we first propose to integrate SR learning into 

segmentation to guide the learning of high-resolution 

representations of segmentation. We further propose an 

infection edge detection guided RMI loss that leverages the 

edge detection results to progressively refine the predictions 

of CT segmentation. The experimental results demonstrate 

the effectiveness of the proposed CogSeg. 
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