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ABSTRACT
In this paper, we propose a novel method to learn face sketch
synthesis models by using unpaired data. Our main idea is
bridging the photo domain X and the sketch domain Y by
using the line-drawing domain Z . Specially, we map both
photos and sketches to line-drawings by using a neural style
transfer method, i.e. F : X/Y 7→ Z . Consequently, we
obtain pseudo paired data (Z,Y), and can learn the map-
ping G : Z 7→ Y in a supervised learning manner. In the
inference stage, given a facial photo, we can first transfer it
to a line-drawing and then to a sketch by G ◦ F . Addition-
ally, we propose a novel stroke loss for generating different
types of strokes. Our method, termed sRender, accords well
with human artists’ rendering process. Experimental results
demonstrate that sRender can generate multi-style sketches,
and significantly outperforms existing unpaired image-to-
image translation methods.

Index Terms— Face sketch synthesis, generative adver-
sarial networks, deep learning, image-to-image translation,
neural style transfer

1. INTRODUCTION

Face sketch synthesis (FSS) aims at generating a sketchy
drawing conditioned on a given facial photo [1]. It has a
wide range of applications in digital entertainments. Re-
cently, great progresses have been made due to the success
of Genearative Adversarial Networks (GANs) [2]. Specially,
researcher pay tremendous efforts to improve the quality
of sketches by developing post-processing techniques [3],
modulating illumination variations [4], using ancillary in-
formation of facial composition [5], exploring sketch priors
[6, 7], and using the cycle consistency loss [8–10].

Existing works formualte FSS as a paired image-to-image
(I2I) translation task [11]. They learn the mapping from the
photo domain X to the sketch domain Y by using photo-
sketch pairs in existing datasets [12]. It is significant to de-
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velop methods for learning FSS models by using unpaired
photos and sketches. Such algorithms will help us simulate
the style of any human artist, if only we obtain a collection of
his/her sketches.

Paired GANs cannot handle such unpaired I2I translation
problem (Fig. 1a). To combat this challenge, researchers have
proposed various unpaired GANs, by using the cycle consis-
tency loss [13, 14] or learning disentangled representations in
latent spaces [15, 16]. These methods simultaneously learn
the mappings G : X 7→ Y and F : Y 7→ X (Fig. 1b). Al-
though unpaired GANs perform well in various I2I translation
tasks, preliminary experiments show that they fail to generate
structure-consistent and stroke-realistic sketches.

Neural style transfer (NST) is another possible solution.
NST aims at transferring a content image to a target style,
without changing the semantic information [17]. NST meth-
ods typically need no paired examples for training. However,
existing NST based FSS methods fail to generate realistic
pencil-drawing strokes and textures [18, 19].
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Fig. 1. Illustration of applying paired GANs, unpaired GANs,
and our method to unpaired training samples.

To combat this challenge, in this paper, we propose
to bridge unpaired photos and sketches by line-drawings.
Specially, we first map both the photo domain X and the
sketch domain Y to a middle explicit domain Z , i.e. the
line-drawings. To this end, we adopt a NST method, termed
AiSketcher [20], and denotes it by F : X/Y 7→ Z . As a re-
sult, we obtain pseudo paired data (Z,Y), and can learn the
mapping from the line-drawing domain to the sketch domain,
i.e. G : Z 7→ Y , in a supervised learning manner. The map-
ping from the photo domain to the sketch domain therefore
becomesG◦F : X 7→ Z 7→ Y . In other words, given a facial
photo x, we can first transfer it to a line-drawing and then to
a sketch by G(F (x)).

The process of our method accords well with the render-
ing procedure of human artists. When human artists draw
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a sketch portrait, they first use long strokes/lines to repre-
sent the outline of a given face. Afterwards, they draw small
strokes and details to represent tone, space, stereoscopy, etc.
Additionally, human artists represent diverse facial areas by
using different types of strokes. We therefore propose a novel
loss function to penalize the divergence between the gener-
ated and real sketches in terms of strokes. We refer to our
method as sRender.

We conduct extensive experiments on multiple styles of
sketches and facial photos. Both qualitative and quantita-
tive evaluations demonstrate that our method can generate
different styles of sketches, with realistic strokes. Besides,
our method significantly outperforms unpaired I2I translation
methods.

In summary, our contributions are mainly fourfold: 1) we
propose a novel framework for learning sketch synthesizer
from unpaired samples; 2) we propose a novel stroke loss to
boost the realism of generated sketches; 3) our method ac-
cords well with human artists’ rendering process; and 4) our
method can generate multi-style sketches and remarkably out-
performs existing unpaired I2I translation methods.

2. METHOD

In the task of face sketch synthesis, we have the photo domain
X and the sketch domain Y , with unpaired photos {xi}mi=1

and sketches {yi}ni=1. The goal is to learn the mapping from
domainX to domain Y . To handle this problem, we introduce
a middle explicit domain Z , i.e. the line-drawings.

The pipeline of our method is illustrated in Fig. 2. First,
we map both facial photos and sketches to line-drawings by
using AiSketcher [20]: F : X/Y 7→ Z . In this way, we ob-
tain pseudo paired samples: {(zi, yi)}ni=1 with zi = F (yi).
Afterwards, we learn the mapping from the line-drawing do-
main to the sketch domain, i.e. G : Z 7→ Y , by using a
paired GAN and such pseudo paired data. Finally, the map-
ping from the photo domain to the sketch domain becomes:
G ◦ F : X 7→ Z 7→ Y . Details will be introduced below.
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Fig. 2. Pipeline of the proposed method.

2.1. Line-drawing Synthesis

First, we use AiSketcher [20] as our line-drawing synthesizer,
due to its remarkable performance for transferring multi-
modal images to line-drawings. AiSketcher is an extension
of AdaIN [21] with a self-consistency loss and compositional
sparse loss. We reimplement AiSketcher exactly following
[20], and use no paired data for training. In the testing stage,
we apply the learned AiSketcher model F to facial photos or
sketches, and obtain the corresponding line-drawings. Due
to the space limitation, we don’t introduce AiSketcher in this
paper. Please refer to [20] for details.

2.2. Sketch Synthesis

We learn the mapping G : Z 7→ Y , by using a paired GAN
and the pseudo paired data {(zi, yi)}ni=1, with zi = F (yi).

Network Architectures. Our paired GAN includes one
generator, G, and two discriminators, Dk, k = 1, 2. The gen-
erator contains 5 Covolutional layers, 9 residual blocks, and
5 Transposed Convolutional layers. The discriminators share
the same architecture, i.e. including 5 Convolutional layers,
but are fed with different scales of images. Specially, the orig-
inal real and synthesized images are input into D1. We down-
sample these images by a factor of 2 and input them into D2.
Such multi-scale discriminators constrain G producing real-
istic strokes at different scales [22]. We use ReLU and leaky
ReLU in the generator and discriminators, respectively. In-
stance normalization is used in all networks.

Adversarial Loss. In the training stage, Dk tries to clas-
sify the pair (zi, yi) as positive and (zi, G(zi)) as negative.
While G aims to make (zi, G(zi)) classified as positive by
Dk. The corresponding adversarial loss Ladv is expressed as:

Ladv =

2∑
k=1

n∑
i=1

logDk(zi, yi) + log(1−Dk(zi, G(zi))).

(1)
Feature Matching Loss. Following [22], we additionally

use the feature matching loss to stabilize training. It is for-
mulated as the L2 distance between the activations of yi and
G(zi) in discriminators:

LFM =

2∑
k=1

5∑
l=1

n∑
i=1

‖Dl
k(yi)−Dl

k(G(zi))‖2, (2)

where Dl
k(·) denotes activations on the l-th layer in Dk.

Reconstruction Loss. In our settings, given an input zi,
we have a real sketch yi as the target. We thus use the recon-
struction loss between G(zi) and yi, which is denoted by:

Lrec =

n∑
i=1

∑
j

‖φj(yi)− φj(G(zi))‖2. (3)

We adopt the VGGnet pretrained for image classification as
φ [23]. φj(·) denotes activations at the j-th layer of φ. Pre-



liminary experiments show that Lrec leads to more realistic
textures, in contrast to the pixel-wise reconstruction loss [11].

Stroke Loss. When human artists draw a sketch, they
present different facial areas by using diverse strokes. For
example, they typically use long strokes to represent hairs,
small strokes to represent eyebrows, stacked and light strokes
to represent gradients, etc. To achieve this effect, we empir-
ically classify strokes into 7 types according to facial areas:
skin, hair, boundary, eye brow, eye, clips, and ear. Corre-
spondingly, we train a CNN to correctly classify the stroke
type of a given patch. Afterwards, we fix the learned network
and denote it as ψ. The stroke loss is then expressed as:

Lstr =

n∑
i=1

∑
j

‖ψj(yi)− ψj(G(zi))‖2, (4)

where ψj(·) denotes activations on the j-th layer of network
ψ. In the implementation, ψ contains an input Convolutional
layer, a dense block, and an ouput Convolutional layer [24].
Besides, we predict semantic masks of sketches by using
BiSeNet [25], and extract patches of the aforementioned
facial areas for training ψ.

Training. In the training stage, we combine all the afore-
mentioned loss functions, and optimize the generator and dis-
criminators in an alternative manner by:

(G∗, D∗
k) = min

G
max
Dk

Ladv + λ1LFM + λ2Lrec + λ3Lstr.

(5)
Inference. In the inference stage, the learned generator

works as G : Z 7→ Y . Recall that we have AiSketcher as
F : X/Y 7→ Z . Given a facial photo x, we can generate the
corresponding sketch by first transferring it to a line-drawing
F (x) and then to a pencil-drawing by G(F (x)). Besides,
given a real sketch y, we can reconstruct it by G(F (y)).

3. EXPERIMENTS

We conduct a series of experiments to analyse the perfor-
mance of our method. Details will be given below.

3.1. Settings

For AiSketcher, we exactly follow the settings presented in
[20]. Due to space limitation, we will briefly introduce the
settings about the sketch synthesis stage. Our code and results
have been released at: aiart.live/sRender.

Facial Sketches. We collect two styles of real sketches.
Specially, we download (I) 366 croquis sketches drawn by
artist @HYEJUNG from Instagram; and (II) 505 charcoal
sketches drawn by different artists from Web (Fig. 3). For
each style, we randomly split the corresponding sketches for
training and testing in a ratio of 8 : 2.

Facial photos. We need no facial photos for training
the sketch generator. In the testing stage, we randomly se-
lect 505 photos from the CelebA-HQ dataset [27], and obtain

the corresponding sketches by sequentially feeding them into
AiSketcher F and the learned sketch generator G.

Preprocessing. All images are geometrically aligned re-
lying on two eye centers and cropped to size of 512 × 512.
Here, we use face++ api for landmark detection.

Training details. During training, each input image is
rescaled to 542 × 542, and then a crop of size 512 × 512
is randomly extracted. We also use horizontal flip for data
augmentation. We use the Adam solver with β1 = 0.5, β2 =
0.999, and batch size of 1. The learning rate is initially 2e−4
for the first 100 epoch, and then linearly deceases to zero over
the next 100 epochs. Besides, we set λ1 = 100, λ2 = 10, and
λ3 = 0.002.

Criteria. To quantitatively evaluate the quality of gener-
ated sketches, we adopt the Fréchet Inception Distance (FID)
metric. To alleviate the effect of facial identity, we randomly
extract about 10,000 patches of size 256× 256 from real and
generated sketches, respectively, for calculating FIDs. In ad-
dition, we use the Scoot metric [28] to measure the similarity
between real and synthesised sketches. We also use the Fish-
erface method for face sketch recognition [7].

In the following, we report the FID values for both the
testing sketches and the photos. While we only report the
Scoot and face recognition accuracy (Acc.) on the testing
sketches, because there is no real sketches for testing photos.
Lower FID values, but higher Scoot and Acc. values, denote
better quality of synthesised sketches.

3.2. Results

Multi-style Sketch Synthesis. In this section, we evaluate
the capacity of sRender on generating multi-style sketches.
First, we apply sRender to reconstruct real testing sketches.
As shown in Fig. 3, for both croquis and charcoal styles,
the reconstructed sketches represent realistic strokes as the
ground truths. Besides, sRender achieves a FID of 22.92 on
the croquis sketches, and 12.30 on the charcoal sketches. Af-
terwards, we apply sRender to facial photos. As shown in
Fig. 4, the synthesis sketches preserve the content and iden-
tity of the input photos. Besides, the strokes and textures in
synthesised sketches are similar to the corresponding styles
shown in Fig. 3a and Fig. 3d. These observations demon-
strate that sRender can generate high-quality sketches with
different styles.

(a) (d)(c)(b) (e) (f)

Fig. 3. Illustration of reconstructed sketches by sRender. (a)
Real croquis sketch, (b) synthesised line-drawing, (c) recon-
structed sketch; (d) real charcoal sketch, (e) synthesised line-
drawing, and (f) reconstructed charcoal sketch.

aiart.live/sRender


Table 1. Quantitative evaluation of the generated croquis sketches conditioned on facial photos.

AdaIN [21] CycleGAN [13] MUNIT [15] DRIT [16] NICE-GAN [26] U-GAT-IT [14] sRender (Ours)

FID 49.43 45.51 46.35 42.80 39.71 48.26 30.35

(a) (d)(c)(b) (a) (d)(c)(b)
Fig. 4. Sketches generated by sRender. (a) Input photo, (b)
synthesised line-drawing, (c) generated croquis sketch, and
(d) generated charcoal sketch.

Fig. 5. Croquis sketches generated by our sRender and un-
paired I2I translation methods. (Please zoom in for details.)

Comparison with SOTA. In this part, we compare our
method with various models including AdaIN [21], Cycle-
GAN [13], MUNIT [15], DRIT [16], U-GAT-IT [14], and
NICE-GAN [26]. We train these methods by using the same
unpaired data as our method. All these methods are imple-
mented using the author’s code. Since these methods learn
the mapping from the photo domain to the sketch domain di-
rectly, they cannot be applied to sketches. We therefore only
reports their performance on the testing photos here.

The corresponding quantitative indices are reported in Ta-
ble 1, where the best indices are denoted in boldface fonts
and the second best ones in underlined fonts. Obviously, our
sRender obtains the best FID, which is about 9 points lower
than the second best method, i.e. NICE-GAN. Such a signif-
icant superiority implies that our sRender can generate more
realistic sketches than all the other methods.

As shown in Fig. 5, the sketches generated by MUNIT,
DRIT, and NICE-GAN present black inks and geometric de-
formations. The sketches generated by U-GAT-IT are ac-
ceptable, but still contain defects like inks. The images pro-
duced by CycleGAN are similar to grayscale photos instead
of sketches. AdaIN produced visually comfortable sketches
in general. However, the textures produced by AdaIN are over
smooth and diverse from real pencil-drawing strokes. In con-

Table 2. Ablation study on the testing croquis sketches.

sRenderPix2Pix sRender w/o Lstr sRender

FID 37.49 22.97 22.92
Scoot 0.557 0.570 0.587
Acc. 0.672 0.739 0.750

trast, sketches generated by sRender preserve the content of
input photos and present realistic pencil-drawing strokes.

Both the quantitative and qualitative comparisons demon-
strate that our sRender outperforms previous methods. Be-
sides, sRender successfully learns the mapping from the
photo domain to the sketch domain, by using unpaired sam-
ples.

Ablation Study. To analyse the settings of sRender, we
build two model variants by removing the stroke loss Lstr

(denoted by sRender w/o Lstr) and replacing sRender by
Pix2Pix [11] (denoted by sRenderPix2Pix), respectively. We
evaluate these models on the testing sketches.

As shown in Table 2, using Lstr boosts both the quality
(i.e. FID and Scoot) and the face recognition accuracy. Cor-
respondingly, as shown in Fig. 6, Lstr make the generator
produce realistic pencil-like strokes and textures. Although
sRenderPix2Pix shows inferiority over sRender, it still produces
high quality sketches. Such inspiring observations imply that
we can extend our method to handle diverse I2I translations
by exploring optimal paired GAN architectures.

(a) (d)(c)(b)
Fig. 6. Croquis sketches generated by (a) sRenderPix2Pix, (b)
sRender w/o Lstr, (c) sRender, and (d) the ground truth.

4. CONCLUSIONS

In this paper, we propose a novel face sketch synthesis method
learned from unpaired samples. Experimental results demon-
strate the remarkable capacity of our method. While there are
still spaces for improving the quality of generated sketches.
First, it is promising to use semantic information to guide the
generators. Second, we will explore the use of facial photos



in the training stage. Finally, extending the proposed method
to different I2I translation tasks is another future work.
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