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ABSTRACT

Camera calibration plays a critical role in various computer
vision tasks such as autonomous driving or augmented real-
ity. Widely used camera calibration tools utilize plane pattern
based methodology, such as using a chessboard or AprilTag
board, user’s calibration expertise level significantly affects
calibration accuracy and consistency when without clear in-
struction. Furthermore, calibration is a recurring task that has
to be performed each time the camera is changed or moved.
It’s also a great burden to calibrate huge amounts of cam-
eras such as Driver Monitoring System (DMS) cameras in a
production line with millions of vehicles. To resolve above
issues, we propose a calibration system called Calibration
with Pose Guidance to improve calibration accuracy, reduce
calibration variance among different users or different trials
of the same person. Experiment result shows that our pro-
posed method achieves more accurate and consistent calibra-
tion than traditional calibration tools.

Index Terms— camera calibration, pose set optimization,
pose guidance

1. INTRODUCTION

Camera calibration models and estimates a camera’s intrin-
sic and extrinsic parameters, and is an essential first step for
many robotic and computer vision applications [1, 2, 3, 4].
Intrinsic parameters deal with the camera’s internal charac-
teristics, such as, its focal length, principle point, skew, and
lens distortion [5]. Extrinsic parameters describe camera’s
position and orientation [6, 7]. Knowing a camera’s calibra-
tion parameters allows us to remove its lens distortion, which
is necessary in many applications that demands accuracy such
as vehicle or pedestrian detection in wide Field of View au-
tonomous vehicle cameras. However, reliable and accurate
camera calibration usually requires an expert intuition to reli-
ably constrain all of the parameters in the camera model. Ex-
isting calibration toolboxes [8, 9] ask users to capture images
from a posed calibration pattern board (chessboard [5, 10, 11],
circle grid pattern [12], AprilTag [13, 14], etc.) in positions
of their choosing, after which the maximum-likelihood cali-
brations parameters are computed using all images in a batch
optimization. Tan et al. [15] proposed to use monitor to dis-
play poses, however how to choose optimal poses to display
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Fig. 1. Overview of proposed camera calibration with pose
guidance system. In the first step, our approach generates a
set of 3D virtual poses. The optimal 3D virtual set is selected
among many candidate pose sets. Two pose sets are denoted
using red and blue color are shown for illustration. The pose
set maximizing a defined score function is selected as opti-
mal pose set which is deployed in our calibration system in
next step. In the second step, an expected virtual pose is dis-
played on top of video streaming to guide the user to move
calibration pattern with adjustment instructions shown in red
arrows.

on monitor screen is not considered. Richardson et al. [16]
and Rojtberg et al. [17] proposed pose selection for interac-
tive calibration which depends on a good pose initialization.
The existing calibrators have common issues: 1) Calibration
result consistency is not guaranteed if a tool is ran by users
with different level of expertise. Even for the same user, dif-
ferent runs of the same tool may result in significant differ-
ence. 2) The widely used re-projection error alone is not suf-
ficient to control estimated parameters’ error. 3) User has to
guess the chessboard pose and whether the pose number and
variation can lead to a successful calibration, this is challeng-
ing especially for the novice without domain expertise. It can
cause frustrated user experience and also make quality control
hard [18].

In this work, we try to close these gaps by proposing the
Calibration with Pose Guidance system, the diagram of which
is shown in Fig. 1. In the first step, a set of optimal 3D virtual
poses are selected using a novel score function which narrows
down solution search space and avoid degenerated poses. In
the second step, expected virtual poses are displayed on top
of video streaming to guide the users to move calibration pat-
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tern respectively, with adjustment instructions shown in red
arrows.

We summarize our major contributions as follows: 1) A
method to automatically generate an optimal set of poses for
calibrating a camera is proposed. The pose set automatically
avoids degenerated cases, such as feeding the images cap-
tured at the same place many times into the tool and helps
narrow down solution search space for calibration optimiza-
tion. 2) A novel score function to evaluate pose sets to find
the optimized set for a specific application scenario. 3) A
gamified Human Computer Interface (HCI) that is simple and
straightforward to guide any user, no matter of its expertise,
to capture sufficient and desired pre-defined poses accurately
and consistently, with visual hints for adjustment of the pat-
tern board for each pose. Our method saves a lot of train-
ing time for novices to conduct calibration. The optimal pose
set achieves higher accuracy and consistency than human in-
volved calibration method especially for the novices.

2. METHODOLOGY

2.1. Calibration with Pose Guidance System Overview

While the same methodology applies to all kinds of camera
models and pattern boards, we use the pinhole camera model
and chessboard [5] to illustrate our proposed method. De-
note an arbitrary 3D world point as M = [X,Y, Z]

T and its
projected 2D image point m = [u, v]

T , their homogeneous
representations can be denoted as M̃ = [X,Y, Z, 1]

T and
m̃ = [u, v, 1]

T . Their geometric relationship can be repre-
sented as the following equation [5],

sm̃ = K∆([R t]M̃), (1)

where [R t] are the rotation and translation which relate
the world coordinate system to the camera coordinate system,
K is the intrinsic matrix, s is the scalar factor, and ∆(·) is
the distortion operator. We use k1, k2, k3 to denote radial dis-
tortion, and p1, p2 to denote tangential distortion. For intrin-
sic matrix, we use fx, fy to denote camera focal length, and
cx, cy to denote the principal point. Camera intrinsic calibra-
tion is to estimate K and lens distortion ∆. Camera extrinsic
calibration is to estimate R and t. Intrinsic and extrinsic pa-
rameters can be estimated by optimization procedure [5] to
minimize the re-projection error in Eq.(2),

εrepoj =

N∑
i

M∑
j

||mi,j − m̂(K,Ri, ti,Mi,j)||, (2)

where m̂(K,R, t,M) is the projection of point Mj (j =
1, 2, ...,M ) in image i (i = 1, 2, ..., N ) according to Eq.(1).
mi,j is the correspondent detected 2D point for point j in
image i.

Our pose guidance contains two steps as shown in Fig.1,
optimal 3D virtual pose set selection, and pose set deploy-
ment, the details of which are described in Section 2.2 and
2.3 respectively.

2.2. Optimal 3D Virtual Pose Set Selection

We define a pose pi as the chessboard’s posture in 3D space,
which can be parameterized as pi(Ri, ti). A pose set P is a
set of N such poses, where N is experimental variable, e.g. N
= 20 in our experiments, which can be represented in Eq.( 3):

P = {pi(Ri, ti)|i = 1, 2, ..., N}. (3)

In previous work, no constraints are set for how such a
pose set shall be selected, and they can be randomly picked
up. However, random pose set can have multiple issues. First,
pose set contains degenerated case leads to singular solution
in calibration optimization step. Second, the coverage of the
poses may not be sufficient horizontally, vertically, or in terms
of distance, rotation angle variance, which are critical in many
applications, such as accurate distortion parameter estima-
tion.

There are two steps in our proposed optimal 3D virtual
pose set selection: 1) proposing candidate virtual pose sets;
and 2) defining a score function and searching in the can-
didate sets that maximizes the score function. Finding the
optimal solution for optimal pose set, denoted as p∗, is diffi-
cult due to the infinite of the searching space. However, we
can set reasonably constraints according to specific applica-
tion and propose candidate sets, for example, removing all
poses whose camera-board distance greater than 2 meters or
whose yaw angle greater than a certain degree threshold for a
DMS application. Then, we define a novel score function to
rank pose set candidates and select the one with the highest
score as the final result.

Generation of High Quality Pose Set. For each com-
puter vision application where camera calibration is required,
we can define a pose search space Sa(Ra, ta). We define a
pose search space Sa(Ra, ta) which is the camera working
field of view space. Note that S can vary among different
camera use cases. For example, in DMS we are interested to
ensure objects within 1 or 2 meters in the camera’s field of
view are imaged appropriately, but the interested range can
reduce to 10 to 80 centimeters if we are calibrating a smart-
phone front camera. Assume M poses are uniformly sam-
pled in S0. We randomly select N poses to avoid degenerate
poses, such as repetition of the same pose, or missing cover-
age of a corner. For example, two parallel poses only have
different distance to camera lead ambiguity to focal length
estimation. Calibration degenerated cases will result in lo-
cal minimal solution and have been studied by many research
[18, 19, 20, 21, 22].

Pose Set Ranking. We adapt an iterative procedure to
rank the pose set candidates [16]: several poses are selected
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Fig. 2. Example of two pose sets evaluated using MRE and
our proposed score function. The pose set covers the whole
camera field of view evenly and consist of various pose vari-
ations gives higher score, and the bad pose set with many
duplicate poses ranks low in our score. Both of their MRE
are considered as good calibration if using industrial practical
standard (i.e. MRE less than 1 or 2 pixels).

to estimate camera model, iterative the procedure to cover
poses on not very well calibrated region and an updated
camera model is estimated. We chose 15-20 (an empirical
number from our experience and also suggested by many
references[8]) selected poses cover whole camera field of
view to estimate camera intrinsic parameters, denoted as
C = [fx, fy, cx, cy, k1, k2, k3, p1, p2]. Note that the initial-
ization step can be skipped if a good estimation of intrinsic
parameters are already known, for example, camera factory
calibration is known or the same model of camera has already
been calibrated. Major previous work [5] only use Mean Re-
projection Error (MRE) to evaluate the quality of a calibration
result. However, MRE alone is not sufficient for measuring
all calibration intrinsic parameters’ accuracy; MRE can still
be very small for large intrinsic parameter errors, as shown
in Fig. 2. Our proposed score function takes both MRE and
estimated parameter variance into consideration. Camera pa-
rameter is estimated from each pose set candidate, then we
compare the camera parameter estimated from each pose set
candidate with initialized camera model parameter C. The
score function to evaluate each pose set candidate’s quality is
reciprocal of summation of MRE and parameter estimation
variance, as shown in Eq.(4),

S(P|R, t,K,∆(·)) =
1

αεrepoj + β||Ĉ−C||
, (4)

where Ĉ is the estimated intrinsic parameters, α and β are
parameters to control the cost from re-projection error and
parameter estimation error.

The optimized pose set P∗, which obtains the highest
score among all the candidate sets is therefore defined as:

(a) Guided pose shows on the left image, user needs to adjust pose to match guided pose. Right image 
shows detected chessboard corners.

(b) User’s chessboard pose matches guided pose, user interface guides user to capture image by pressing 
‘y’ or ‘Y’ and next pose will show.

Fig. 3. Calibration with pose guidance system user interface.

P∗ = argmax
P

S(P|R, t,K,∆(·)). (5)

The score function is in favor of the pose set that gives
both minimum re-projection and parameter estimation vari-
ance. The pose set with the highest score is chosen to be the
final optimal pose set.

2.3. Optimal 3D Virtual Pose Set Deployment

We discuss how to use optimal pose set to project onto cal-
ibration interface to guide a user to pose calibration pattern
board appropriately in this section. One example of how a
user is guided to move a chessboard, match the expected pose,
and capture a qualified image is shown in Fig.3. To capture a
qualified image, the user needs to move the calibration pattern
around to ensure its image on screen matches the guided pose
displayed. If the average distance of the four out-most cor-
ners is less than a threshold, where distance is defined as the
L2 pixel distance between the expected position and current
position, the user’ pose is considered matched with guided
pose. Once the user matches the guided pose, the system will
capture current frame and show the next guided pose. The
procedure repeats until all N images are captured. Our solu-
tion supports both automatically capturing, or manually cap-
turing such as by pressing a specific key in keyboard.

3. EXPERIMENTS

We evaluate our proposed camera calibration system from
multiple perspectives. First, we evaluate our proposed score
function to demonstrate its capability to select optimal pose
set which improve calibration accuracy. Second, we report re-
sult to demonstrate the robustness of calibration accuracy and
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Fig. 4. Calibration accuracy and variance comparison be-
tween OpenCV and our calibration system. Mean re-
projection error from 10 users’ trials are indicated by red hor-
izontal bars, the full range by blue boxes.

reproducibility of our method. Finally, we demonstrate that
our calibration tool is applicable to a wide variety of lens1 2.

3.1. Score Function Evaluation

To evaluate the effectiveness of our optimal pose selection
using defined score function in Eq.(5), we simulate a vir-
tual camera with known intrinsic parameters C and we use a
9 × 6 chessboard as calibration pattern. Pose selection space
Sa(Ra, ta) is chosen based on the working space range from
specific use cases and candidate pose sets are generated in
Sa(Ra, ta). Eq.(1) is used to project pose sets onto 2D image
and Eq.(4) is used to compute score for each pose set.

We show pose set with maximum and minimum Mean Re-
projection Error (MRE), our proposed score and calibration
parameter estimation error ||Ĉ −C|| in Table 1. Comparing
first row and fourth row, pose set with smaller MRE may not
have smaller parameter estimation error. In contrast to MRE,
our score in favor pose set with both smaller MRE and smaller
parameter variance which gives a much superior calibration
accuracy evaluation.

MRE score in Eq.(4) ||Ĉ−C||
PS(min MRE) 0.0970 1.3689 0.6336
PS(max MRE) 0.1679 1.0820 0.7562
PS(min score) 0.1440 0.2052 4.729
PS(max score) 0.1186 4.8216 0.088

Table 1. Comparison of pose sets (PS) with maximum and
minimum MRE, and with maximum and minimum score.

3.2. Calibration Accuracy and Reproducibility

We invited 10 participants without any previous calibration
experience to calibrate various camera lens with two differ-
ent methods: 1) OpenCV calibration toolbox [8] 2) Calibra-
tion with Pose Guidance. Participants were given a printed

1Len1:HFOV=80, VFOV=60, resolution=1280x800, fomat=IR
2Len2:HFOV=120, VFOV=100, resolution=1920x1208, fomat=RGB

OpenCV Ours

Len1 Mean Std Mean Std
fx 1357.8 23.3 1350.1 2.6
fy 1356.9 19.5 1352.1 2.8
cx 660.6 14.2 657.6 2.7
cy 411.4 27.7 383.8 4.9
k1 -0.3829 0.0105 -0.3774 0.0047
k2 0.2436 0.2715 0.2425 0.0472
Len2 Mean Std Mean Std
fx 976.7 13.8 972.5 2.9
fy 977.6 13.4 974.4 2.9
cx 963.1 9.5 954.9 4.2
cy 633.8 8.0 644.4 1.0
k1 -0.3591 0.0188 -0.3454 0.0059
k2 0.1777 0.0375 0.1398 0.0092

Table 2. Mean and standard deviation of focal lengths, focal
centers and distortion parameters (only k1 and k2 are listed
here for illustration) estimation for all trials in the human
study. While the mean values of parameter estimation are
similar from OpenCV and our method, our method provides
much less standard deviation.

instructions for calibration which describe change poses of
chessboard when using OpenCV calibration. We show the
participant sample poses from OpenCV calibration tutorial
website. We received feedback like how much degree the
chessboard pose should be changed, how far should be the
distance between the chessboard and the camera, etc, which
shows that participants in general need additional instructions
to use OpenCV calibration tool.

Fig.4 shows re-projection error using different calibra-
tion tools. Our proposed calibration system achieves much
smaller re-projection error and smaller variance. Table 2
shows detailed statistics, where the mean and standard devia-
tion of estimated intrinsic parameter from 10 participants are
listed. Our system provides much smaller standard deviations
among all parameters estimation. In summary, our sys-
tem provides: 1) smaller re-projection error which indicates
higher calibration accuracy and 2) smaller parameter esti-
mation variance among different trials which demonstrates
stability and reproducibility of our calibration method.

4. CONCLUSIONS

Camera calibration with pose guidance is proposed to im-
prove calibration accuracy, reduce calibration variance and
reduce training time to novices. We propose a novel score
function to select optimal pose set which reduces both re-
projection error and intrinsic parameter estimation variance.
Our proposed calibration system is evaluated against widely
used calibration tools. Multiple experiments are conducted to
demonstrate the accuracy and robustness of our system.
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