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ABSTRACT

This article seeks to advance coded compressed sensing

(CCS) as a practical scheme for unsourced random access.

The original CCS algorithm features a concatenated structure

where an inner code is tasked with support recovery, and an

outer tree code conducts message disambiguation. Recently,

a link between CCS and sparse regression codes was estab-

lished, leading to the application of approximate message

passing (AMP) to CCS. This connection was subsequently

strengthened by integrating AMP and belief propagation on

the outer code through a dynamic denoiser. Along these

lines, this work shows how block diagonal sensing matrices

akin to those used in traditional CCS, together with the

aforementioned dynamic denoiser, form an effective means

to get good performance at low-complexity. This novel

architecture can be used to scale this scheme to dimensions

that were previously impractical. Findings are supported by

numerical simulations.
Index Terms—Unsourced random access, approximate mes-

sage passing, coded compressed sensing, concatenated coding.

I. INTRODUCTION

Recently, there has been a renewed interest in research

problems related to uncoordinated multiple access commu-

nications and sparse support recovery in exceedingly large

dimensions, with a focus on the design of efficient low-

complexity algorithms. This attention stems, partly, from

the introduction of unsourced random access as a paradigm

to enable machine-driven wireless data transfers at scale,

a prime application for future wireless infrastructures. The

aforementioned problems fall within the area of compressed

sensing (CS), a topic that has seen significant theoretical

and practical advances within the past decades. In particular,

many efficient solvers are readily available to perform sparse

recovery, with both performance guarantees and low com-

plexity. Nevertheless, an important limitation in seeking to

apply standard CS solvers to support recovery in exceedingly

large dimensions comes from handling the ensuing sensing

matrices. For example, while it may be possible for such

algorithms to handle sparse vectors with a million entries,
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computational limitations preclude the straightforward ap-

plication of these solvers to much longer vectors. This con-

trasts with the dimensionality of unsourced random access

problems, which can easily exceed 2100. Many schemes

have been introduced to address this issue [1]–[10], each

providing a way to circumvent the curse of large dimensions.

Coded compressed sensing (CCS), a line of investigation

introduced by Amalladinne et al., has inspired several low-

complexity schemes for unsourced random access. This

framework is rooted in a divide-and-conquer approach where

support recovery is broken down into several sub-problems,

each of a size amenable to the application of standard

CS solvers, such as non-negative least squares (NNLS)

or approximate message passing (AMP). This reduction is

enabled through an architecture that contains a concatenated

code structure reminiscent of sparse regression codes [11]

and for-all sparse recovery [12]. Once fragments are obtained

by the CS solvers, they are stitched together using the outer

tree code, yielding the desired support of the sparse vector.

A significant advancement to this paradigm was proposed

by Fengler, Jung, and Caire [5]. They realized that the

complexity reduction afforded by the CCS scheme originates

primarily from the tree encoding and the corresponding

partitioning of codewords. Consequently, one can run AMP

with a dense sensing matrix applied to a tree encoded sparse

vector, rather than using individual CS solvers, thereby

resulting in notable performance improvements.

The connection between coded compressed sensing and

AMP can be pushed further. In the original implementa-

tion [5], the inner code is decoded first using AMP paired

with a separable denoiser that accounts for the sparse nature

of the input vector. Once this phase is complete, the outer

tree code is employed to piece fragments together. In [10],

Amalladinne et al. show that the tree code can be redesigned

to allow information to flow dynamically between the inner

and outer decoders. The resulting AMP denoiser takes ad-

vantage of both sparsity and the structure of the outer tree

code. This enhancement improves performance significantly

while maintaining low overall complexity.

The present article seeks to advance the state-of-the-art

in CCS via the following contributions. We show that, in

specific cases, the coupling afforded by the outer code is

enough to capture most of the performance gains associated

with CCS-AMP architectures. That is, one can utilize a block
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diagonal sensing matrix in CCS-AMP, rather than a dense

matrix, without incurring significant performance loss. This

can be interpreted as either a means to reduce complexity or

a pathway to apply this algorithm to much larger systems,

while maintaining the benefits of CCS-AMP. We also note

that the framework proposed in [10] works for a general class

of graph-based codes suited to belief propagation, beyond the

modified tree code introduced therein. Thus, the proposed

framework also raises an important research question: What

are good outer codes for CCS-AMP?

II. SYSTEM MODEL AND FRAMEWORK

Mathematically, we wish to address a version of the noisy

sparse support recovery problem, y = Φx + z where x is

a K-sparse vector and z is additive Gaussian noise with

independent N (0, 1) elements. The design of the sampling

matrix Φ is under our control, and its columns can be viewed

as a dictionary of possible signals. Our goal is to recover the

support of x from y or, equivalently, to produce a binary

vector x̂ whose entries indicate the estimated support of x.

We assess performance based on the optimization criterion

1
K

∑

k∈supp(x) |1− x̂(k)| .

The estimate x̂ is also constrained to be (at most) K-sparse.

The model above is an instance of a compressed sens-

ing problem, a well-studied object. Our challenge is to

design a pragmatic, low-complexity scheme for this partic-

ular problem when the dimensionality of x precludes the

direct application of existing CS solvers. The motivation

behind this setting comes from the unsourced multiple access

problem formulation [13], where the length of x can easily

exceed 2100. Another intrinsic aspect of our formulation is its

linear structure. In unsourced random access, x is obtained

through the inherent addition that occurs on a multiple access

channel. In this sense, Φx captures the summation of the

signals that occurs with uncoordinated devices. A detailed

description of unsourced random access can be found in [13].

Our envisioned architecture can be summarized by looking

at three components. First, a sequence of information bits is

encoded into a signal. This is followed by the composition

of signal aggregates on a multiple access channel, plus the

corruption resulting from additive noise. Finally, a decoding

process seeks to recover the list of transmitted messages by

producing estimate x̂. It is instructive to keep in mind that

the proposed scheme produces both a sampling matrix Φ

and a support recovery algorithm, although the construction

of the signal dictionary is only treated implicitly below.

II-A. Encoding Procedure

Our approach features a concatenated code, and it is

depicted in Fig. 1. The outer code is assumed to come

from a code family that is amenable to decoding through

belief propagation [14]. For the problem at hand, this code

should be over a large field or ring. Together, these properties
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Fig. 1: Message w is encoded into codeword v =
v(1) · · ·v(L) using a graph-based code. Every symbol v(ℓ)
is translated into its index representation m(ℓ). These one-

sparse blocks are concatenated, leading to vector m.

ensure that decoding can be performed efficiently using a

combination of message passing and fast transform tech-

niques [10]. In the next step, the value of every variable

node is translated into an index representation of length m.

This action is emblematic of CCS [3], and it produces a

one-sparse block. The index vectors from the L variable

nodes are then aggregated into vector m, which possesses a

structure reminiscent of sparse regression codes [11], [15].

The transmitted codeword is obtained by multiplying m by a

judiciously designed matrix AD, i.e., ADm is transmitted

over the channel.

II-B. Decoding Strategy

Within the proposed framework, the observation is com-

posed of K signals embedded in noise. We must therefore

extend our notation to accommodate several messages being

encoded separately. The observation, which acts as input to

the decoding algorithm, becomes

y =
∑

K

i=1 ADmi + z = As+ z

where s is the aggregate signal, D is a diagonal matrix that

accounts for symbol power, and z is noise. The goal of the

decoder is twofold: it must recover the support of s from

observation y, and it must disambiguate the list of codewords

{mi} that gives rise to s.

An algorithmic structure suitable to recover s from y, as

introduced in [5], is the application of AMP. The approach is

to utilize AMP with a posterior mean estimate (PME) as the

denoiser to first recover s, and then stitch fragments using

the tree outer code. Building on this contribution, it is shown

in [10] that the outer code and the corresponding decoder

can be redesigned to act, together with a PME, as a dynamic

denoiser. In this latter case, one round of belief propagation

is performed on the factor graph of the outer code to inform

the prior probabilities of the PME at every step. Interestingly,

the framework of [10] can be generalized to outer codes

beyond tree codes. This is meaningful because the extra

flexibility acts as a means to circumvent the systematic

encoding intrinsic to tree coding and, hence, it offers a richer

design space for CCS.



Our main contribution comes from examining sensing

matrix A. The original CCS framework of Amalladinne et

al. [3] can be interpreted as having a block diagonal structure

with independent CS solvers, whereas CCS with AMP is ap-

plied to a dense matrix A [5]. However, our new framework

is rich enough to enable running an AMP-inspired algorithm

with a block diagonal A, while performing the denoising

jointly across blocks using one round of belief propagation

on the factor graph of the outer code. Conceptually, this

hybrid scheme induces a form of spatial coupling through

the joint denoising function while reducing the complexity of

the inner decoder, providing excellent performance at a lower

computational cost. Alternatively, the hybrid approach can

be leveraged to extend the proposed techniques to support

recovery problems of much larger dimensions, beyond what

was practically possible with existing solutions. This should

become manifest shortly, as we turn to the technical aspects

of our scheme.

III. AMP WITH DYNAMIC DENOISER

We turn to the detailed description of the proposed

framework. We adopt an AMP-inspired composite iterative

structure. The algorithm iterates between two equations:

z(t) = y −ADs(t) +
z(t−1)

n
divDηt−1

(

r(t−1)
)

(1)

s(t+1) = η
t

(

ATz(t) +Ds(t)
)

(2)

where n denotes the height of the sensing matrix A with

initial conditions s(0) = 0 and z(0) = y. Equation (1)

can be interpreted as computing the residual enhanced with

an Onsager correction [16], [17]; whereas (2) is a state

update through denoising. The argument to the denoising

function ηt(·) is termed the effective observation, and it is

denoted by r(t). When A is dense, this algorithm falls within

the extended AMP framework for non-separable denoisers

characterized by Berthier, Montanari, and Nguyen [18]. A

remarkable fact about AMP is that, under certain technical

conditions, the effective observation is asymptotically dis-

tributed as Ds + τtζt where ζt is an i.i.d. N (0, 1) random

vector and τt is a deterministic quantity. This property, which

hinges on the presence of the Onsager correction in (1), is

pertinent because it permits good intuition and makes AMP

mathematically tractable in many contexts.

The purpose of the denoising function is to incorporate

knowledge about properties of s into the composite iterative

process. By construction, s and r inherit a block repre-

sentation akin to m, as illustrated in Fig. 1. Under this

block representation, s features L sections, each with K
non-zero entries (with high probability for large sections).

This is captured in the original PME denoiser. A less

obvious property of s, and one that is more challenging to

leverage, comes from the fact that it arises as a sum of K
valid codewords from the outer code. Consequently, it must

s
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1
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Fig. 2: The envisioned decoder features two phases. Initially,

AMP is employed to estimate the support of s through

a composite iteration scheme with a BP denoiser This

is followed by a disambiguation phase where individual

codewords are recovered from the aggregate ŝ.

decompose into individual messages mi that are consistent

with the factor graph of the outer code.

Describing the intricacies of the BP denoiser is beyond

the scope of this article, but this information can be found

in [19]. Essentially, a bipartite factor graph is used to

compute the beliefs that coded symbols from a specific

device take on certain values. Messages are exchanged

locally and they are based on extrinsic information. This

operation parallels the evolution of single-user decoders [14],

albeit with key modifications. The local observations within

the factor graph are given by the PME [5], as a means

to circumvent combinatorial complexity associated with the

fact that several codewords exist on a same factor graph.

Section sizes must be large enough to prevent collisions with

high probability and, consequently, the graph-based code

typically employs a large alphabet.

Within the context of AMP, the denoiser seeds the factor

graph with local observations, and then performs one round

of belief propagation. The information messages coming

to a variable node, including that derived from the local

observation, are combined as to produce a local state esti-

mate. These components are then aggregated to produced

an updated state, which serves as input to the computa-

tion of a residual. For our system, the Onsager term is
(
∥

∥D2s(t)
∥

∥

1
−

∥

∥Ds(t)
∥

∥

2)
/nτ2t−1. We note that τ2t can be

approximated as τ2t ≈
∥

∥z(t)
∥

∥

2
/n for t ≥ 0. A justification

for the same can be found in [20]. Message passing over

large sections can be performed efficiently using the fast

Fourier transform or the Fast Walsh-Hadamard transform for

a suitably designed outer code as in [10]. Once the AMP

algorithm has converged, the disambiguation process uses

the structure of the outer code to stitch message fragments

together, as in [10]. A notional diagram appears in Fig. 2.

III-A. Candidate Implementations

In this investigation, we compare the performance of

competing implementations for CCS. The first scheme is the

original CCS scheme introduced in [3]. The corresponding



sensing matrix A is block diagonal, and we use AMP as

a CS solver on a per-section basis. Recovered message

fragments are stitched together using the tree code after-

wards. Candidate 2 is CCS-AMP, with its dense matrix

A, as reported in [5]. For this system, AMP is used as a

global CS solver, followed by disambiguation using the tree

code. The third candidate implemented is CCS-AMP with

dynamic denoising, whereby belief propagation is integrated

into the AMP cycle [10]. This scheme also employs a

dense matrix A. Finally, the novel and forth implementation

features a block diagonal A. AMP is applied to individual

blocks in that the residual is calculated concurrently, but

section by section. However, during the denoising phase,

belief propagation is applied to the entire system to create

coupling among blocks. In the numerical evaluation, our

proposed scheme corresponds to Case 4.

We note that the latter algorithm is a hybrid between CCS

and CCS-AMP with dynamic denoising. In this sense, it is

an AMP-inspired framework that seeks to reap the benefits

of a dense matrix at a much lower complexity. It is worth

noting that, although CCS-AMP is designed to handle very

large dimensions, it is constrained in that the width of A

should not exceed 220 or so. In the hybrid implementation

the state update is applied block-wise after denoising and,

hence, the width of a block is constrained but not the width

of the overall block diagonal sensing matrix. The BP on

the factor graph of the outer code, especially with a fast

implementation, can be made to handle a large number of

blocks. This enables a scaling of the problem that was not

possible in the original CCS because of error propagation

due to hard decision, or CCS-AMP due to processing power.

This is also a distinguishing attribute of our novel scheme.

IV. PARAMETERS AND NUMERICAL RESULTS

This section compares the performance of the proposed

hybrid scheme against that of previously published CCS

implementations. We consider a system with K = 100 active

devices. The payload size corresponding to each active user

is w = 128 bits. The message of each such device is encoded

into a block of n = 38400 channel uses. The energy-per-bit

for this system is defined as Eb

N0

= nP

2w , where P represents

the energy of each symbol transmitted by the active users.

The factor graph for the outer code employed in our simu-

lations is analogous to the triadic design introduced in [19],

and it is identical for all implementations. Specifically, outer

codewords are partitioned into L = 16 blocks, each of

length 16 bits. After switching to the index representation,

section m(ℓ) has length 216, yielding an overall vector m

of length L216 = 220. Both the block diagonal matrix for

CCS and CCS-hybrid, and the dense matrix for the two

CCS-AMP variants are formed by selecting random rows

from Hadamard matrices (excluding the row of all ones).

These design choices aim at providing a fair comparison for

alternate systems.
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Fig. 3: This graph offers a comparison of per-user error rate

for four candidate AMP implementations. The performance

of the coupled block-diagonal scheme is very competitive.

Numerical results appear in Fig. 3, where per-user proba-

bility of error is plotted as a function of Eb

N0
. Every point on

this graph is averaged over 100 instances for statistical ac-

curacy. Interestingly, the performance of the hybrid scheme

far exceeds those of the original CCS algorithm [21] or the

original CCS-AMP [5]. Furthermore, it approaches the per-

formance of the more complex CCS-AMP implementation

with the dynamic BP denoiser [10]. This is very encouraging,

as the type of spatial coupling generated by the outer code

seems to be sufficient to guide the decoding closer to the

true sparse solution. Table I shows the relative computational

loads of the four candidate schemes. The hybrid CCS-AMP

scheme considerably outperforms the CCS-AMP scheme

without BP and admits a comparable execution time.

Case 1 Case 2 Case 3 Case 4

1 2.7369 6.5078 2.9028

Table I: This table offers a run-time comparison between

various candidate schemes normalized by the run-time of

the original CCS scheme (Case 1).

V. DISCUSSION

This article explores a variation of coded compressed

sensing (CCS), which adopts the simple block diagonal

structure for the sensing matrix of the inner code but

integrates message passing on the factor graph of the outer

code as a means to produce spatial coupling. The end result

is a structurally simpler version of CCS that exhibits most of

the performance benefits associated with the more complex

CCS-AMP with belief propagation. The complexity of the

decoding process for the inner code becomes linear. This

enables the scaling of unsourced random access to problem

sizes that could not be handled in the past, a situation which

invites the search for better outer codes.
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