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ABSTRACT

Rank-constrained spatial covariance matrix estimation (RCSCME)
is a state-of-the-art blind speech extraction method applied to cases
where one directional target speech and diffuse noise are mixed. In
this paper, we proposed a new algorithmic extension of RCSCME.
RCSCME complements a deficient one rank of the diffuse noise spa-
tial covariance matrix, which cannot be estimated via preprocess-
ing such as independent low-rank matrix analysis, and estimates the
source model parameters simultaneously. In the conventional RC-
SCME, a direction of the deficient basis is fixed in advance and only
the scale is estimated; however, the candidate of this deficient basis is
not unique in general. In the proposed RCSCM model, the deficient
basis itself can be accurately estimated as a vector variable by solv-
ing a vector optimization problem. Also, we derive new update rules
based on the EM algorithm. We confirm that the proposed method
outperforms conventional methods under several noise conditions.

Index Terms— Blind speech extraction, diffuse noise, spatial
covariance matrix, EM algorithm

1. INTRODUCTION

Blind speech extraction (BSE) is a technique for extracting a tar-
get speech signal from observed noisy mixture signals without any
prior information, e.g., spatial locations of speech and noise sources
and microphones. BSE can be interpreted as a special case of blind
source separation (BSS) [1]; BSS aims to separate not only the target
source but also the other sources. In this paper, we focus on the BSE
problem for the observed noisy mixture that includes one directional
target speech and diffuse background noise. Such BSE can be uti-
lized for many applications including automatic speech recognition
and hearing aid systems [2, 3].

In a determined or overdetermined situation (number of micro-
phones≥ number of sources), independent vector analysis [4, 5] and
independent low-rank matrix analysis (ILRMA) [6, 7, 8, 9] provide
better BSS performance. These methods assume that the frequency-
wise acoustic path of each source can be modeled by a single time-
invariant spatial basis, which is the so-called steering vector. In
this model, the rank of a spatial covariance matrix (SCM) [10] be-
comes unity in all frequencies. Thus, hereafter, we call these BSS
techniques rank-1 methods. Under diffuse noise conditions, rank-1
methods cannot separate directional sources in principle [2], and the
estimated directional sources are always contaminated with a diffuse
noise component remaining in the same direction. This is because

This work was supported by Japan-New Zealand Research Cooperative
Program between JSPS and RSNZ, Grant number JPJSBP120201002, and
JSPS KAKENHI Grant Numbers 19K20306, 19H01116, and 19H04131.

the sources modeled by the rank-1 SCM (i.e., the steering vectors)
cannot represent such spatially distributed noise components.

In contrast to rank-1 methods, multichannel nonnegative matrix
factorization (MNMF) [11, 12] can represent the spatially spread
sources and diffuse noise because MNMF utilizes a full-rank SCM
for each source. However, the estimation of the full-rank SCM has
a huge computational cost and lacks robustness against the param-
eter initialization [6]. FastMNMF [13, 14] is a model-constrained
version of original MNMF and achieves an efficient SCM optimiza-
tion with lower computational cost compared with that in MNMF,
although its performance still depends on the initial values for the
parameters.

To achieve fast and stable BSE under the diffuse noise con-
dition, rank-constrained SCM estimation (RCSCME) [15, 16] was
proposed, where the mixture of one directional speech and diffuse
background noise is assumed. Fig. 1 illustrates a process flow of RC-
SCME. In RCSCME, a rank-1 method such as ILRMA is utilized as
a preprocess for BSE. From the rank-1 method,M estimated signals
are obtained [2]; one includes target speech components contami-
nated with diffuse noise in the same direction and the other M − 1
estimates consist of diffuse noise components in various directions,
where M is the number of microphones. Then, the rank-(M − 1)
SCM of the diffuse noise are calculated from the M − 1 noise esti-
mates. RCSCME estimates both the deficient rank of the noise SCM,
which is used to compose the full-rank SCM for diffuse noise, and
the source model parameters based on the expectation-maximization
(EM) algorithm. The estimated target speech signal can be obtained
via multichannel Wiener filtering using the full-rank SCM of dif-
fuse noise. In [15], it was confirmed that RCSCME can outperform
ILRMA, MNMF, and FastMNMF in terms of the speech extraction
performance.

In this paper, we further improve the BSE performance by gen-
eralizing full-rank SCM estimation in conventional RCSCME. In the
conventional method, the direction of the deficient basis in the rank-
(M−1) noise SCM is fixed to its eigenvector of the zero eigenvalue
and only the scale of this basis is parameterized. However, the candi-
date of this deficient basis is not unique because any vector that is not
included in the space spanned by column vectors of the rank-(M−1)
SCM can be used. In the proposed method, to estimate the optimal
full-rank noise SCM, we parameterize the deficient vector itself and
derive new update rules based on EM algorithm. Regarding its re-
lation to prior works, the proposed RCSCME is interpreted as the
world’s first spatial model extension of the conventional RCSCME;
this extension had been considered as a difficult vector optimization
problem but this paper can successfully give the effective solution
with a new mathematical claim. Also, since the advantage in accu-
rate SCM estimation under the fixed rank-(M−1) noise SCM is still
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Fig. 1. Process flow of RCSCME.

valid, the proposed RCSCME always outperforms the conventional
full-rank SCM methods like MNMF and FastMNMF.

2. CONVENTIONAL RCSCME [15]

2.1. Generative model

In this section, we explain the generative model in conventional RC-
SCME. Let xij = (xij,1, · · · , xij,m, · · · , xij,M )T be the observed
M -channel vector obtained by short-time Fourier transform (STFT) ,
where T denotes the transpose, and i = 1, 2, . . . , I , j = 1, 2, . . . , J ,
and , m = 1, 2, . . . ,M are the indices of frequency bins, time
frames, and channels (microphones), respectively. The observed sig-
nal is a mixture of the directional target speech and diffuse noise as

xij = z
(t)
ij + z

(n)
ij , (1)

where z
(t)
ij ∈ CM and z

(n)
ij ∈ CM are the source images of the

target source and the diffuse noise, respectively.
The directional target source z

(t)
ij can be modeled as

z
(t)
ij = a

(t)
i s

(t)
ij , (2)

s
(t)
ij |r

(t)
ij ∼ Nc(0, r

(t)
ij ), (3)

where a
(t)
i ∈ CM , s(t)ij , r(t)ij > 0 are the steering vector, dry source

component, and the time-frequency variance of the directional target
source, respectively, and Nc(0, r) is the zero-mean circularly sym-
metric complex Gaussian distribution with a variance r. Note thatM
steering vectors, ai,1,ai,2, . . . ,ai,M , are estimated in advance via
the rank-1 method, and we define the ntth steering vector ai,nt cor-
responds to a

(t)
i . This channel selection of the target source can be

achieved based on the kurtosis values of each estimated signal [15].
The model (2) assumes that the source image of directional target
source has time-invariant acoustic paths represented by the single
spatial basis, steering vector a(t)

i , and the rank of SCM for z(t)
ij be-

comes unity. In addition, since the power spectrogram of speech
signals has sparsity property, we assume r(t)ij ∼ IG(α, β) as a prior
distribution, where IG(α, β) is the inverse gamma distribution with
the shape parameter α > 0 and the scale parameter β > 0.

In contrast to (2), the source image of diffuse noise, z(n)
ij , should

have a full-rank SCM. The generative model of such sources is de-
fined as [10]

z
(n)
ij ∼ N

(multi)
c (0, r

(n)
ij R

(n)
i ), (4)

whereN (multi)
c (0,R) is the zero-mean multivariate circularly sym-

metric complex Gaussian distribution with a covariance matrix R,
and r(n)ij > 0 and R

(n)
i ∈ CM×M are the time-frequency variance

and the time-invariant SCM for diffuse noise, respectively. The full-
rank SCM of diffuse noise is modeled as

R
(n)
i = R

′(n)
i + λibib

H
i , (5)

where R
′(n)
i ∈ CM×M is the rank-(M − 1) SCM estimated by the

rank-1 method in advance and is defined as

R
′(n)
i =

1

J

∑
j

ŷ
(n)
ij (ŷ

(n)
ij )H, (6)

ŷ
(n)
ij = W−1

i (wH
i,1xij , . . . ,w

H
i,nt−1xij ,

0,wH
i,nt+1xij , . . . ,w

H
i,Mxij)

T, (7)

wi,m is the demixing filter estimated by the rank-1 method such as
ILRMA, ŷ(n)

ij is the sum of diffuse noise components whose scales
are fixed by the back projection technique [17], and H denotes the
Hermitian transpose. Also, bi ∈ CM is the deficient basis for the
rank-(M − 1) SCM R

′(n)
i , which makes the SCM R

(n)
i full-rank.

Note that bi is defined as a unit vector and its scale is defined by
λi > 0. In conventional RCSCME, the direction of bi is fixed to the
eigenvector of the zero eigenvalue in R

′(n)
i and only the scale λi is

estimated.

2.2. Update rules based on EM algorithm

The parameters Θc = {r(t)ij , r
(n)
ij , λi} can be optimized by maxi-

mum a posteriori (MAP) estimation based on the EM algorithm with
the latent variables s(t)ij and z

(n)
ij . Details of the derivation are de-

scribed in [15]. The update rules are obtained as follows: In the
E-step,

R̃
(n)
i = R

′(n)
i + λ̃ibib

H
i , (8)

R̃
(x)
ij = r̃

(t)
ij a

(t)
i (a

(t)
i )H + r̃

(n)
ij R̃

(n)
i , (9)

r̂
(t)
ij = r̃

(t)
ij − (r̃

(t)
ij )2(a

(t)
i )H(R̃

(x)
ij )−1a

(t)
i

+ |r̃(t)ij xH
ij(R̃

(x)
ij )−1a

(t)
i |

2, (10)

R̂
(n)

ij = r̃
(n)
ij R̃

(n)
i − (r̃

(n)
ij )2R̃

(n)
i (R̃

(x)
ij )−1R̃

(n)
i

+ (r̃
(n)
ij )2R̃

(n)
i (R̃

(x)
ij )−1xijx

H
ij(R̃

(x)
ij )−1R̃

(n)
i , (11)

and in the M-step,

r
(t)
ij ←

r̂
(t)
ij + β

α+ 2
, (12)

λi ←
1

J

∑
j

1

r̃
(n)
ij |bHi ui|2

uH
i R̂

(n)

ij ui, (13)

R
(n)
i ← R

′(n)
i + λibib

H
i , (14)

r
(n)
ij ←

1

M
tr
(
(R

(n)
i )−1R̂

(n)

ij

)
, (15)

where Θ̃c = {r̃(t)ij , r̃
(n)
ij , λ̃i} is the set of up-to-date parameters and

ui is the eigenvector of R
′(n)
i that corresponds to the zero eigen-

value.



3. PROPOSED RCSCME

3.1. Motivation

In conventional RCSCME, the direction of deficient basis bi is fixed
and only its scale λi is estimated. However, the candidate of the
deficient basis is not unique because any complex vector that is not
included in the space spanned by column vectors of R

′(n)
i can be

used. In this paper, we propose a new vector optimization algorithm
that estimates the deficient basis bi itself, and derive new update
rules based on the EM algorithm. This method can be interpreted as
a generalization of conventional RCSCME.

3.2. New formulation of full-rank SCM and derivation of up-
date rules

To simultaneously parameterize the direction and the scale of the
deficient basis in R

′(n)
i , we model the full-rank noise SCM R

(n)
i as

follows:

R
(n)
i = R

′(n)
i + cic

H
i , (16)

where ci ∈ CM is the deficient basis vector in R
′(n)
i . We model all

the other variables in the same way as conventional RCSCME.
We estimate the parameters Θp = {r(t)ij , r

(n)
ij , ci} by MAP esti-

mation based on the EM algorithm with the latent variables s(t)ij and

z
(n)
ij . A Q function is defined by the expectation of the complete-

data log-likelihood w.r.t. p(s(t)ij ,z
(n)
ij |xij ; Θ̃p) as

Q(Θp; Θ̃p) =
∑
i,j

[
−(α+ 2) log r

(t)
ij −M log r

(n)
ij − log detR

(n)
i

−
r̂
(t)
ij + β

r
(t)
ij

−
tr
(
(R

(n)
i )−1R̂

(n)

ij

)
r
(n)
ij

]
+ const., (17)

where Θ̃p = {r̃(t)ij , r̃
(n)
ij , c̃i} is the set of up-to-date parameters and

const. are the constant terms that do not depend on Θp.

In the E-step, r̂(t)ij and R̂
(n)

ij are obtained in the same way as the
conventional RCSCME as follows:

R̃
(n)
i = R

′(n)
i + c̃ic̃

H
i , (18)

R̃
(x)
ij = r̃

(t)
ij a

(t)
i (a

(t)
i )H + r̃

(n)
ij R̃

(n)
i , (19)

r̂
(t)
ij = r̃

(t)
ij − (r̃

(t)
ij )2(a

(t)
i )H(R̃

(x)
ij )−1a

(t)
i

+ |r̃(t)ij xH
ij(R̃

(x)
ij )−1a

(t)
i |

2, (20)

R̂
(n)

ij = r̃
(n)
ij R̃

(n)
i − (r̃

(n)
ij )2R̃

(n)
i (R̃

(x)
ij )−1R̃

(n)
i

+ (r̃
(n)
ij )2R̃

(n)
i (R̃

(x)
ij )−1xijx

H
ij(R̃

(x)
ij )−1R̃

(n)
i . (21)

Among some update rules in the M-step, we especially describe
the derivation of the update rule of ci. First, we differentiate the Q
function with respect to c∗i as follows:

∂Q

∂c∗i
= −J(R

(n)
i )−1ci + J(R

(n)
i )−1T̂i(R

(n)
i )−1ci, (22)

where ∗ denotes the complex conjugate and T̂i is defined as follows:

T̂i :=
1

J

∑
j

1

r̃
(n)
ij

R̂
(n)

ij . (23)

From the equation ∂Q/∂c∗i = 0, we obtain

ci = T̂i(R
(n)
i )−1ci. (24)

It is diffult to directly solve (24) w.r.t. ci since R
(n)
i itself includes

ci. Hence, we use the following claim to resolve the equation.

Claim 1. Let ui ∈ CM be a vector that satisfies R
′(n)
i ui = 0.

Then, the following holds:

(R
(n)
i )−1ci =

ui

cHi ui
. (25)

Proof. First, it holds that

R
(n)
i ui = R

′(n)
i ui + cic

H
i ui

= (cHi ui)ci. (26)

Then, by multiplying (R
(n)
i )−1/(cHi ui), we can obtain

(R
(n)
i )−1ci =

ui

cHi ui
. (27)

By applying Claim 1 to (24), the equation can be deformed as

(cHi ui)ci = T̂iui. (28)

By multiplying uH
i , we can obtain

|cHi ui|2 = uH
i T̂iui, (29)

and consequently cHi ui can be represented as

cHi ui = exp(−jφ)

√
uH

i T̂iui, (30)

where φ ∈ [0, 2π) is an arbitrary constant and j is an imaginary unit.
Hence, the solution of the equation ∂Q/∂c∗i = 0 is

ci =
exp(jφ)√
uH

i T̂iui

T̂iui. (31)

We use φ = 0 in our update rules since we model R(n)
i by cic

H
i ,

which does not depend on φ. We obtain the update rules of all other
parameters than ci in the same way as the conventional RCSCME.
Finally, in the M-step, we update the parameters as follows:

r
(t)
ij ←

r̂
(t)
ij + β

α+ 2
, (32)

ci ←
T̂iui√
uH

i T̂iui

, (33)

R
(n)
i ← R

′(n)
i + cic

H
i , (34)

r
(n)
ij ←

1

M
tr
(
(R

(n)
i )−1R̂

(n)

ij

)
. (35)

(33) can be interpreted as the vector direction adaptation by rotating
ui via T̂i composed of posterior.



Fig. 2. Recording conditions of impulse responses.
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Fig. 3. Behavior of SDR improvement in babble noise case.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

To confirm the efficacy of the proposed RCSCME, we conducted
a BSE experiment using a simulated mixture of a target speech
source and diffuse noise. To simulate the mixture, we convoluted
dry sources with impulse responses from each position to four mi-
crophones as shown in Fig. 2. The diffuse noise was simulated by
simultaneous reproduction from 19 positions and the target speech
arrived from a closer position than each position of the diffuse
noise. As the target speech source, we utilized six speech signals
obtained from JNAS [18]. We imitated the babble, station, traffic,
and cafe noises. We used 19 JNAS speech signals as the babble
noise. The station, traffic, and cafe noise signals were obtained from
DEMAND [19]. An STFT was performed by using a 64-ms-long
Hamming window with a 32-ms-long shift. The speech-to-noise
ratio was set to 0 dB.

We compared eight methods, namely, ILRMA [6], blind spatial
subtraction array (BSSA) [2], multichannel Wiener filter with single-
channel noise power estimation (MWF1) [20], multichannel Wiener
filter with multichannel noise power estimation (MWF2) [21],
the original FastMNMF [14], FastMNMF initialized by ILRMA
(ILRMA +FastMNMF), the conventional RCSCME [15] and the
proposed RCSCME. As for BSSA, ILRMA was used instead of
frequency-domain independent component analysis in [2] and
set the oversubtraction and flooring parameters to 1.4 and 0, re-
spectively. For FastMNMF and ILRMA, the nonnegative ma-
trix factorization (NMF) variables were initialized by nonnega-
tive random values, and the demixing matrix was initialized by
the identity matrix. As for ILRMA+FastMNMF, the NMF vari-
ables were handed over from ILRMA to FastMNMF. Also, the
SCM was initialized by ai,nta

H
i,nt

+ εI for ILRMA+MNMF and
ai,ntai,nt + ε

∑
n 6=nt

ai,na
H
i,n for ILRMA+FastMNMF, where I

Table 1. SDR improvements [dB] for each method and noise case.
Each term represents ”peak score / score after 200 iterations”

Method babble
noise

station
noise

traffic
noise

cafe
noise

ILRMA 6.1 / - 6.2 / - 4.7 / - 6.4 / -
BSSA 6.8 / - 6.9 / - 5.7 / - 7.2 / -
MWF1 6.1 / - 6.9 / - 5.8 / - 7.0 / -
MWF2 6.9 / - 7.2 / - 5.6 / - 7.4 / -

FastMNMF 1.7 / 1.7 2.6 / 2.5 2.9 / 2.8 2.6 / 2.6
ILRMA

+FastMNMF 6.5 / 6.2 6.6 / 6.6 5.4 / 5.4 7.3 / 7.3

Conventional
RCSCME 8.4 / 7.5 9.5 / 8.9 7.5 / 7.2 9.6 / 8.9

Proposed
RCSCME 8.8 / 8.4 10.7 / 10.4 8.8 / 8.7 10.6 / 10.2

is the identity matrix and ε was set to 10−5. In ILRMA, which was
used as the preprocessing for each method in the experiment, the
number of bases was 10 and the number of iterations was 50. As
for all methods, by selecting the channel whose kurtosis was the
maximum in all channels, we blindly decided the index nt of the
target source in the demixed signals by ILRMA. In the conventional
RCSCME, we utilized the minimum positive eigenvalue σi of R′(n)i

as the initial value of λi. We used the inverse gamma distribution
parameters α = 2.5 and β = 10−16 in the conventional RCSCME,
which showed the best separation performance in the experiment
of [16]. ci was initialized by

√
σiui and we chose the parameters

α = 0.1 and β = 10−16 in the proposed RCSCME experimentally.
Source-to-distortion ratio (SDR) improvement [22] was used as a
total evaluation score. The SDR improvement was averaged over
10 parameter-initialization random seeds, four target directions, and
six target speech sources; thus each SDR improvement score is the
average value over 240 trials.

4.2. Result

Figure 3 shows the behavior example of the averaged SDR improve-
ment of the proposed and the conventional RCSCME for each iter-
ation under a babble noise condition. Although the preprocessing,
i.e., ILRMA, is an iterative method, we show the averaged SDR im-
provement of ILRMA after 50 iterations as a reference. From this
figure, we can see that the SDR improvement of the conventional
and proposed RCSCMEs have a peak and the proposed RCSCME
outperforms the conventional RCSCME from the viewpoint of both
the peak score and the score after 200 iterations.

Table 1 shows SDR improvements for each method under each
noise condition. For FastMNMF, ILRMA+FastMNMF, conven-
tional RCSCME, and proposed RCSCME, which are iterative meth-
ods, we display both the peak score and the score after 200 iterations.
From this table, we reveal that the proposed RCSCME outperforms
all the conventional methods under all the noise conditions.

5. CONCLUSION

In this paper, we proposed a new algorithmic extension of RCSCME
to improve the BSE performance. In the conventional RCSCME, a
direction of the deficient basis is fixed and only the scale is estimated.
In the proposed RCSCM, we accurately estimated the deficient basis
itself as a vector variable by solving a vector optimization problem.
Also, we derived a new update rules based on the EM algorithm.
We confirmed that the proposed method outperformed conventional
methods under several noise conditions.
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