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ABSTRACT

In this work we address disentanglement of style and content in

speech signals. We propose a fully convolutional variational au-

toencoder employing two encoders: a content encoder and a style

encoder. To foster disentanglement, we propose adversarial con-

trastive predictive coding. This new disentanglement method does

neither need parallel data nor any supervision. We show that the pro-

posed technique is capable of separating speaker and content traits

into the two different representations and show competitive speaker-

content disentanglement performance compared to other unsuper-

vised approaches. We further demonstrate an increased robustness

of the content representation against a train-test mismatch compared

to spectral features, when used for phone recognition.

Index Terms— speech disentanglement, unsupervised learning,

contrastive learning, autoencoder

1. INTRODUCTION

Disentangling factors of variation in data recently attracted increased

interest for many modalities. Disentangled representations are con-

sidered useful in two ways. First, they can improve performance for

various downstream tasks, which are learned on a small amount of

labeled data. In particular, it can yield improved robustness against

train-test mismatches if the factors that are informative about the task

can be successfully disentangled from the variations caused by a do-

main shift. Second, in a disentangled representation certain factors

can be modified while keeping the rest fixed, e.g., changing the light-

ing in an image without changing the content. Learning disentangled

representations with no or only little supervision is particularly inter-

esting, because it can make use of the vast amounts of unannotated

data available in the world.

In this paper we address disentanglement of speech signals by

separating long-term variations, referred to as style, and short-term

variations, referred to as content. The proposed factorized varia-

tional autoencoder (FVAE) employs two encoders to extract two dis-

joint representations, namely, a style embedding and a sequence of

content embeddings, which are jointly decoded to reconstruct the in-

put signal. To restrict the content embeddings to only capture short-

term variations, we propose an adversarial regularization based on

contrastive predictive coding (CPC) [1], which is completely unsu-

pervised. The basic idea is to penalize mutual information between a

current and a future content embedding. Therefore, slowly changing

variations need to be captured by the style embedding.

While the proposed approach is rather general, we here focus

on its capability to disentangle speaker and linguistic attributes. Our

proposed model is trained on speech data requiring neither phonetic
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labels nor speaker labels. We also do not require parallel data, where

the same linguistic content is spoken by different speakers. Com-

pared to other unsupervised approaches, we demonstrate superior

disentanglement performance in terms of downstream phone classi-

fication and speaker verification tasks. Particularly, we show that

the learned content embeddings are largely speaker invariant and

achieve an increased robustness against a train-test mismatch com-

pared to spectral features. While we focus on disentanglement in this

paper, we also provide listening examples showing that the model

can be used to perform voice conversion (VC) when decoding con-

tent embeddings with an exchanged style embedding.

The rest of the paper is structured as follows. After we discussed

related work in Sec. 2, an overview of CPC is given in Sec. 3. Then,

Sec. 4 presents our proposed FVAE and how we use CPC to sup-

port disentanglement. Finally, experiments are shown in Sec. 5 and

conclusions are drawn in Sec. 6.

2. RELATED WORK

There are many works focusing on unsupervised disentanglement

of all latent factors of a generative model [2, 3, 4]. Those works

are mainly applied to toy-like image data sets, e.g., 2D shapes [5],

where the generating factors are well defined. Other works tackle

supervised disentanglement of a single factor using an adversarial

classifier in the latent space [6, 7].

While the above works target other modalities, there are several

recent works tackling disentangled speech representation learning

from non-parallel data. Many works, e.g., [8, 9, 10, 11], focus on

extracting a speaker independent content representation, while rep-

resenting the speaker identity as a one-hot encoding. Others also

use speaker specific decoders [12, 13]. Therefore, these works can

neither be used for style extraction nor for voice conversion with

unknown target speakers. Also, speaker labels are required.

Unsupervised approaches to speaker-content disentanglement

are proposed in [14, 15, 16, 17]. None of these works use an explicit

disentanglement objective as proposed in this paper. The authors

of [15] propose to encourage disentanglement by using instance nor-

malization (IN) in the content encoder, which removes, to some ex-

tent, static signal properties such as speaker attributes. The AutoVC

model [17] relies on a carefully tuned bottleneck such that ideally

all content information can be stored in the content embedding but

none of the speaker-related information. In [18], the AutoVC model

was extended to an unsupervised disentanglement of timbre, pitch,

rhythm and content. The VQVC [16] achieves disentanglment by

applying a bottleneck in terms of vector quantization (VQ). The

factorized hierarchical variational autoencoder (FHVAE) proposed

in [14] unsupervisedly disentangles “sequence-level” (>200ms)
and “segment-level” (<200ms) attributes, by restricting sequence-

level embeddings to be rather static within an utterance while also

putting a bottleneck on the segment-level embeddings.

http://arxiv.org/abs/2005.12963v2


3. CONTRASTIVE PREDICTIVE CODING

Given a sequence Y = [y1, . . . ,yT ] of feature vectors yt, which are

in our case features of a speech signal, CPC [1] aims at extracting

the mutual information from two segments Yt=[yt−c, . . . ,yt+c]
and Yt−τ , where c denotes a one-sided context length and τ a shift

between the segments. For this purpose, the segments are encoded

into the embeddings ht=fcpc(Yt) and ht−τ=fcpc(Yt−τ ) such that

ht−τ allows the prediction of the future embedding ht:

ĥt = gτ (ht−τ )

with gτ (·) denoting the projection head that predicts τ steps ahead.

The CPC model is trained using a contrastive loss [1]:

Lcpc = −
1

T − τ

T∑

t=τ+1

exp(hT
t ĥt)∑

h̃t∈Ht

exp(h̃T
t ĥt)

, (1)

where Ht is the set of candidate embeddings {h(b)
t | 1 ≤ b ≤ B}

in the mini-batch of size B. Note that Eq. (1) equals a cross en-

tropy loss including a softmax where the logits are given as the inner

product of the predicted embedding ĥt and the candidate embed-

dings h̃t ∈ Ht. Hence, the model is essentially trained to be able to

correctly classify the true future embedding out of a couple of candi-

dates. The number of steps τ that the model predicts into the future

controls the kind of mutual information that is encoded. If τ is small,

i.e., the segments are very close to each other, the model probably

learns to recognize content attributes, e.g., whether they are parts of

the same acoustic unit. However, if τ is large, i.e., the segments are

further apart, the mutual information the model has to recognize are

primarily the static properties such as speaker attributes.

4. CONTRASTIVE PREDICTIVE CODING SUPPORTED

FACTORIZED VARIATIONAL AUTOENCODER

To learn disentangled representations of style and content, we pro-

pose a fully convolutional FVAE which is illustrated in Fig. 1. The

FVAE employs two encoders: a content encoder to encode con-

tent information from an input sequence X=[x1, . . . ,xT ] into a se-

quence of content embeddings Z=[z1, . . . , zN ], and a style encoder

to extract style traits into a style embedding s̄.

As input signal representation X we extract F=80 log mel-filter

bank energy (F-Bank) features for each frame of a short-time Fourier

transform (STFT) using an audio sample rate of 16 kHz, a frame

length of 50ms and a hop-size of 12.5ms. Each log-mel band is nor-

malized by subtracting the global mean and dividing by the global

standard deviation, which are determined on a training set.

The encoders and the decoder are one-dimensional convolu-

tional neural networks (CNNs) as shown in Fig. 2. The style en-

coder uses Ko=So=1 yielding frame level outputs S=[s1, . . . , sT ]
on which a global average pooling (GAP) over time is applied to

obtain an utterance-level style embedding s̄. The content encoder

uses Ko=So=Sds with downsampling being performed when Sds>1

such that N=⌈T/Sds⌉. The concatenated embeddings
[
s̄ . . . s̄
z1 . . . zN

]

are forwarded to the decoder network which outputs an input signal

reconstruction X̂. The input layer of the decoder upsamples the em-

beddings of length N back to length T by using Ki=Si=Sds. The

training objective for reconstruction is given by the mean squared

error (MSE):

Lrec =
1

T
||X̂−X||22 .

To support style extraction, we apply an auxiliary CPC loss L
(S)
cpc

to the style encoder output, which is the loss from Eq. (1) with vari-
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Fig. 2: CNN Architectures: Conv1d (C,K, S) denotes a one-

dimensional convolutional layer with C output channels, kernel size

of K and striding of S. Conv1dT denotes a one-dimensional trans-

posed convolutional layer.

ables ht replaced by st here. As we aim to extract utterance-level

style information, we choose a large τ=80 which corresponds to a

shift of 1 s. Furthermore, the projection head gτ (·) is chosen to be

the identity ŝt=st−τ such that the style encoder is encouraged to ex-

tract similar embeddings within the same utterance and orthogonal

embeddings in different utterances.

Naturally, the proposed model would tend to access all the re-

quired signal information through Z while ignoring s as there is

usually much more capacity in a sequence of embeddings Z than

in a single embedding s̄. Therefore, the challenge is to prevent the

model from also encoding style properties of the signal into Z but

make the model access it through s̄.

VAEs [19] have been used to put an information bottleneck

on the content embedding which has shown to improve disen-

tanglement [8]. Here, zn is interpreted as a stochastic vari-

able with prior p(zn)=N (zn;0, I) and an approximate posterior

q(zn)=N (zn;µn
,diag(σ2

n)), with the content encoder providing

µ
n

and log
(
σ

2
n

)
. The content embeddings that are forwarded into

the decoder are sampled as zn∼q(zn) using the reparameterization

trick [19] during training, while being set to zn=µ
n

in test mode.

The Kullback-Leibler divergence (KLD)

Lkld =
1

N

N∑

n=1

KL(q(zn)||p(zn))

that is added to the VAE objective prefers the posterior q(zn) to



be uninformative which helps encoding information into s̄ rather

than Z. However, it also harms reconstruction which is why it should

not be weighted too high either.

Another simple additional measure to encourage disentangle-

ment is to remove or distort utterance-level properties in the input

of the content encoder. Then, X cannot be reconstructed without

accessing information via the style encoder. First, during training

we distort speaker properties using vocal tract length perturbation

(VTLP) [20]. VTLP was proposed to increase speaker variability

when training speech recognition systems. For this purpose, the cen-

ter bins of the mel-filter-banks are randomly remapped using a piece-

wise linear warping function. Second, we perform IN [21] on the

content input, i.e., the individual log-mel bands of each input signal

are normalized across time to zero mean and unit variance. We per-

form IN also in the hidden layers of the content encoder, instead of

batch normalization used in the other sub-networks, which has been

found useful to encourage speaker-content disentanglement [15].

However, none of the above measures explicitly prevents the

content encoder from encoding style. To enforce disentanglement,

the authors of [11] suggested to employ a jointly trained adversarial

speaker classifier on content embeddings to make the content en-

coder drop information revealing the speaker identity. However, the

adversarial speaker classifier has two main disadvantages. First, al-

though it does not require text annotations, it still requires speaker

annotations. Second, it does not scale to large unbalanced databases

with a huge number of speakers as the classification task itself be-

comes too uncertain to obtain useful adversarial gradients.

Therefore, in this work we propose adversarial CPC as an al-

ternative which is fully unsupervised and independent of the (unob-

served) number of speakers. Hence, this approach has the potential

to scale to large unlabeled databases.

We train a CPC encoder H=[h1, . . . ,hT ]=facpc (YZ) on the

content encoder’s output YZ=[yz1
, . . . ,yzN

]=
[

MZ

logVZ

]
with

MZ=[µ
z1
, . . . ,µ

zN
] being the sequence of posterior means and

VZ=[σ2
z1
, . . . ,σ2

zN
] being the sequence of posterior variances. For

the CPC encoder we use the architecture fcpc=Dec(Dh,Kds, Sds)
similar to the VAE decoder with Dh=128. As before, we are in-

terested in extracting global style information which is why we

again choose τ=80 corresponding to 1 s and an identity projection

ĥt=ht−τ . The CPC encoder is trained to minimize the CPC loss (1),

which is referred to as L
(Z)
cpc here. By adding the negative of the CPC

loss to the FVAE objective, the content encoder tries to maximize

it, i.e., the FVAE content encoder and the CPC encoder operate

adversarially here. This prevents the FVAE content encoder from

encoding mutual information into the content embeddings which are

1 s apart (or further) eventually preventing it from encoding speaker

attributes and other static style properties.

Finally, our complete training objective is given as

Lfvae = Lrec + βLkld + λSL
(S)
cpc − λZL

(Z)
cpc .

5. EXPERIMENTS

Experiments are performed on the Librispeech corpus [22] which is

derived from audiobooks and contains, for each speaker, utterances

from one or multiple chapters. Here, train-clean-100 and train-

clean-360 subsets are used for training. These sets contain 100 h
and 360 h of clean speech from 251 and 921 speakers, respectively.

From train-clean-100, however, we only use 60% of the speakers’

utterances for training and leave 2×20% for validation and evalua-

tion of a closed-speaker scenario. In the following we therefore refer

to the train, validation and test portions as train-clean-60, dev-closed

and test-closed, respectively. Validation and evaluation of an open-

speaker scenario is done with the official dev-clean and test-clean

sets, respectively. In all trainings, utterances shorter than 2 s are dis-

carded. Remaining utterances are cut into equally long segments

such that no segment is longer than 4 s.

We compare our proposed method with the following disentan-

glement baselines that are also scalable and can be trained fully un-

supervised, i.e., also without any supervision on speaker labels.

Adaptive instance normalization (AdaIN): The authors of [15]

proposed to use IN in the content encoder to normalize style infor-

mation. The decoder uses AdaIN [23] which applies IN and then

adaptively computes shifts and scales of an affine transformation

from a style embedding extracted by a style encoder.

Dimensionality bottleneck: We already motivated that it is cru-

cial to put an information bottleneck on the content embeddings to

achieve disentanglement. The authors of [17] found that disentan-

glement can be achieved by only carefully tuning the dimensionality

of the latent content representation. We therefore compare our pro-

posed CPC supported FVAE with both the AutoVC model proposed

in [17] as well as with a simple dimensionality tuning in our pro-

posed FVAE without applying any supporting CPC losses. AutoVC

usually uses a pre-trained speaker encoder trained using speaker la-

bels. To make the model fully unsupervised for a fair comparison,

we here replace it with a vanilla CPC encoder H = fcpc(X) pre-

trained on F-bank features X with fcpc = Enc(128, 1, 1), τ=80 and

gτ (h) = h to extract style embeddings.

FVAE and baseline models are trained on the combined train-

clean-60 and train-clean-360 sets for 105 update steps using mini-

batches of 32 segments. When using an adversarial CPC model, it

is exclusively updated for three additional steps after each joint up-

date of FVAE and CPC. Further, an initial warm up of 400 exclusive

FVAE steps followed by 1200 exclusive adversarial CPC steps is

performed. Adam [24] is used for optimization with a learning rate

of 5·10−4 and gradient clipping is applied using thresholds of 10,

20 and 2 for VAE encoders, decoder and CPC encoder, respectively.

After training, the checkpoint which achieves lowest reconstruction

error on the validation set is used to report results on the test set. For

the AdaIN and AutoVC baselines we use the model implementa-

tions released by the authors. Content and speaker embedding sizes

of Dz=32 and Ds=128 are used for all models.

The vanilla CPC model is, similarly to the disentanglement mod-

els, trained on the combined train-clean-60 and train-clean-360 sets

for 5 · 104 update steps using mini-batches of 64, a learning rate of

10−3 and gradient clipping at a threshold of 2.

Disentanglement performance is evaluated as follows.

Post-hoc classifiers: After training, downstream phone and

speaker classifiers are trained on the models’ content embeddings Z.

As the content embeddings are supposed to be informative about the

linguistic content, we aim to obtain a low phone error rate (PER).

In contrast, they are also expected to be speaker invariant which

should therefore not allow speaker classification. Hence, a high

speaker error rate (SER) indicates good disentanglement. Simi-

lar evaluations were made, e.g., in [15, 17]. The architecture of the

classifiers is similar to the decoder with f
(Z)
phn =Dec(40, Sds, Sds) and

f
(Z)
spk =Dec(251, Sds, Sds), where 40 is the number of target phones

and 251 the number of target speakers. If not stated otherwise, the

classifiers are trained on the train-clean-60 set with the phone clas-

sifier being validated and evaluated on dev-clean and test-clean and

the speaker classifier on dev-closed and test-closed, respectively.

Phone alignments for training are imported from Kaldi [25]. Train-

ing is performed for 5 · 104 update steps using mini-batches of 64, a



Table 1: Disentanglement performance measured by downstream

PER on the content embedding (lower is better), SER on the content

embedding (higher is better) and speaker verification on the style

embedding (lower is better). All values are stated in %. Best result

in a block is shown in bold.

# Model
IN VTLP Sds λZ λS

PER(Z) SER(Z)
EER(s̄)

WC AC

1 F-Bank ✗ ✗ - - - 17.7 1.7 17.3 22.4
2 F-Bank ✓ ✓ - - - 15.3 - - -
3 I-Vector - - - - - - - 4.1 6.7
4 CPC ✗ ✗ - - - - - 2.4 6.7

5 AdaIN [15] ✓ ✗ 8 - - 21.4 37.4 7.8 11.2
6 AutoVC [17] ✗ ✗ 16 - - 22.0 52.9 2.4∗ 6.7∗

7 FVAE ✓ ✓ 8 0 0 16.6 18.8 10.1 13.9
8 FVAE ✓ ✓ 16 0 0 17.8 38.0 9.2 12.9
9 FVAE ✓ ✓ 32 0 0 19.8 65.6 8.8 12.2
10 FVAE ✓ ✓ 64 0 0 28.3 86.2 6.6 10.0

11 FVAE ✓ ✓ 8 1 0 17.4 51.3 7.9 11.8
12 FVAE ✓ ✓ 8 0 1 16.7 17.3 2.2 6.6
13 FVAE ✓ ✓ 8 1 1 17.4 48.1 2.1 6.7
14 FVAE ✓ ✗ 8 1 1 17.8 44.0 2.2 6.7
15 FVAE ✗ ✗ 8 1 1 20.0 28.6 2.0 6.7

∗Scores from pre-trained CPC which is used by AutoVC as style encoder.

learning rate of 10−3 and gradient clipping at a threshold of 20. The

checkpoint which achieves highest accuracy on the validation set is

used to report results on the test set. As reference, we also report

performance of classifiers trained with F-bank features.

Speaker Verification: Speaker verification aims to recognize a

pair of utterances as either from the same speaker or from different

speakers by evaluating the similarity of style embeddings. Here, the

distance between two embeddings is measured by their cosine dis-

tance where a pair is classified as same speaker when the distance

falls below a certain threshold. Performance is reported as the equal

error rate (EER) which is the error rate for the threshold where the

false acceptance rate and false rejection rate are equal. We aim at

a low EER as we expect to have similar style embeddings for utter-

ances from the same speaker and different ones for utterances from

different speakers. As Librispeech is not a standard set for speaker

verification, we randomly generate a verification task. For each ut-

terance from test-clean we sample an utterance from every other

speaker to generate a negative pair yielding a total of ∼100 k nega-

tive trials. For positive pairs we consider two setups: In the within

chapter (WC) setup all possible combinations of a speakers’ utter-

ances within the same chapter are considered totaling ∼50 k posi-

tive pairs. In the across chapter (AC) setup we randomly replace

one of the utterances in each WC pair, if possible1, by an utterance

from another chapter. As reference we report the performance of i-

vectors [26] which have been trained on train-clean-60 using Kaldi.

Note that i-vector training requires speaker supervision though and

can hence be considered a topline. We further report performance of

the vanilla CPC model which is unsupervised.

Table 1 shows results for different models and different values

for the hyper parameters Sds (subsampling factor determining the

dimensionality bottlenck), λZ (adversarial CPC weight), λS (auxil-

iary CPC weight), usage of IN and usage of VTLP. All FVAEs have

been trained using β=0.01. The first and second block show ref-

erence and baseline systems, respectively. The third block presents

a dimensionality tuning in our proposed architecture without CPC

support which can also be viewed a baseline for the proposed addi-

tional CPC losses. The last block reports results when using CPC

supported training.

Evaluation of the content embeddings shows that all models are

1Some speakers only have utterances from a single chapter.

Table 2: Mismatched PER when only trained on male speakers. Best

result in column is shown bold.

Features
w/o VTLP w/ VTLP

male female all male female all

F-Bank 24.5 42.8 33.5 23.4 30.2 26.7
FVAE 24.8 31.14 28.2 24.5 28.4 26.4

able to significantly improve speaker invariance compared to F-bank

features. Model 10 gives the best SER result achieving 86.2%. How-

ever, this comes with the cost of a high PER. Comparing PERs, it can

be seen that in most configurations the proposed FVAE significantly

outperforms the baselines. In block three it can be seen that a smaller

bottleneck due to a higher subsampling factor leads to an increase in

both PER and SER as expected. Here, model 8 gives a good bal-

ance between PER, which is still not far off, and speaker invariance,

which is decently high. Compared to model 8, the models 11 and

13 from block four use a smaller Sds but use adversarial CPC. It can

be seen that this yields an improvement of both PER and speaker in-

variance. Comparing the last three models 13, 14 and 15 shows that

PER and speaker invariance both highly benefit from IN and slightly

benefit from VTLP.

Moving on to the evaluation of the style embeddings, it can be

seen that WC verification generally achieves a significantly higher

performance than AC verification. This can be explained due to dif-

ferences in recording conditions between utterances from different

chapters, such as volume and reverberation. Note that unsupervis-

edly trained style encoders are meant to capture such style differ-

ences and, hence, a worse verification performance in the AC setup

is not necessarily a sign of bad quality here. It can be seen that in

both setups the best verification performance can be achieved by our

proposed FVAE when using an auxiliary CPC loss on the style en-

coders’ output (models 12-15) allowing to even outperform i-vectors

and vanilla CPC style embeddings.

Next, we evaluate the robustness of the proposed content feature

extraction in the case of little training data suffering from a train-test

mismatch. Such a scenario is simulated by training a phone classifier

on only a subset of 20 male speakers from train-clean-60 and test on

female speakers. Results are reported in Tab. 2 for both, when us-

ing VTLP and when not using VTLP in classifier training as well as

in FVAE training (models 13,14 in Tab.1). It can be seen that our

proposed model outperforms F-Bank features in mismatched evalu-

ations. As expected the performance difference is, however, much

smaller when VTLP is used. However, note that the male-female

mismatch is only a proof of concept. Other mismatches might not

be compensated by a simple data augmentation such as VTLP.

Finally, we provide listening examples2 showing that the model

is able to perform zero-shot VC. An extensive investigation and eval-

uation of the model’s VC capabilities is, however, left to the future.

6. CONCLUSIONS

The proposed CPC support for training an FVAE conducts disen-

tanglement of speaker and content-induced variations. Its train-

ing is fully unsupervised and does not even require knowledge of

speaker labels. Compared to other unsupervised disentanglement

approaches, superior disentanglement can be achieved in terms of

down stream phone recognition and speaker verification. Further,

the proposed content embedding extraction allows to obtain an

increased robustness against a train-test mismatch when used for

phone classification.

2go.upb.de/acpcvc
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