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ABSTRACT

Notwithstanding the significant advancements in the field of
deep learning, the basic long short-term memory (LSTM)
or Gated Recurrent Unit (GRU) units have largely remained
unchanged and unexplored. There are several possibilities
in advancing the state-of-art by rightly adapting and enhanc-
ing the various elements of these units. Activation functions
are one such key element. In this work, we explore using
diverse activation functions within GRU and bi-directional
GRU (BiGRU) cells in the context of speech emotion recog-
nition (SER). We also propose a novel Attention ReLU GRU
(AR-GRU) that employs attention-based Rectified Linear Unit
(AReLU) activation within GRU and BiGRU cells. We demon-
strate the effectiveness of AR-GRU on one exemplary appli-
cation using the recently proposed network for SER namely
Interaction-Aware Attention Network (IAAN). Our proposed
method utilising AR-GRU within this network yields signifi-
cant performance gain and achieves an unweighted accuracy
of 68.3% (2% over the baseline) and weighted accuracy of
66.9 % (2.2 % absolute over the baseline) in four class emotion
recognition on the IEMOCAP database.

Index Terms— gated recurrent unit, attention mechanism,
speech emotion recognition, ReLU, AReLLU

1. INTRODUCTION

The paralinguistic information embedded in the human voice
reveals the emotional state of a speaker [1]. This information
is of vital importance in Human-Human Interaction (HHI),
as we as humans use it to adjust, for instance, the content of
our message or the tone of our voice with the aim to smooth
the interaction and empathise with our interactant. Thus, in
order to better mimic HHI, there is a need to power machines
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with Speech Emotion Recognition (SER) technologies that can
help amongst manifold further use-cases to boost the Human-
Computer Interaction (HCI) experience.

The problem of SER has been widely investigated in the
literature. Traditional approaches focused on the extraction of
hand-crafted features from acoustic signals, such as pitch and
energy among others [2], to capture the salient information
from the human voice. These hand-crafted acoustic features
are then fed into conventional machine learning techniques,
such as Hidden Markov Models (HMMSs) or Support Vector
Machines (SVMs) [3, 4]. More recent approaches used these
hand-crafted acoustic features or directly the raw audio as input
for deep learning techniques, including Convolutional Neural
Networks (CNNs) [5], Recurrent Neural Networks (RNNs) [6,
7, 8], or the combinations of CNNs and RNNs [9].

RNNSs, such as Long Short-Term Memory (LSTM) [10],
and Gated Recurrent Units (GRU) [11], capture the tempo-
ral dynamics of sequential data. Therefore, such techniques
are suitable for SER tasks, as these are able to capture the
temporal dependencies of the acoustic features. Attention
mechanisms can be used to assist RNNs to focus on the most
emotionally salient information [6, 7, 8]. Furthermore, contex-
tual information can also be used to improve the performance
of SER systems, as shown in recent works [12, 13]. Yeh et
al. [13] successfully exploited contextual information through
an Interaction-Aware Attention Network (IAAN), which uses
previous speaker turns in a two-speaker dialog scenario to
learn attention scores for detecting the emotional state of one
speaker’s utterance.

Current context-aware models for SER only use default
LSTM or GRU cells. These do not consider altering the inter-
nal architecture of these units, and, therefore, might not obtain
the optimal performance, yet. One such alteration can consist
of exploring different activation functions, as those used in
GRU cells play a direct role in determining the outcomes of
the networks. In this work, we propose using Attention-based
Rectified Linear Units (AReLU) [14] as activation function
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within the GRU cell, aiming to maximise the exploitation of
information from the internal components of the GRU. We hy-
pothesise that the performance of current SER system can be
improved by optimising the activation function of the internal
RNN cells, and, therefore, use AReLU for such purpose.

The rest of the paper is organised as follows. Section 2
describes the methodology followed. Section 3 presents the ex-
periments performed and analyses the results obtained. Lastly,
Section 4 concludes the paper, including some directions for
further works.

2. METHODOLOGY

This section introduces the structure of Gated Recurrent Unit
(GRU), describes the Attention-based Rectified Linear Unit
(AReLU) activation function, and presents our proposed novel
integration of the AReLU activation within GRU cells (AR-
GRU).

2.1. Gated Recurrent Units

Gated Recurrent Units (GRUs) are a type of Recurrent Neural
Networks (RNN), which use gating mechanisms to control and
manage the flow of information between cells in the neural
network. The structure of the GRU allows adaptively captur-
ing dependencies from large data sequences, while ensuring
that the information from earlier parts of the sequences is not
discarded. This is achieved through the gating mechanisms,
which regulate the information to be kept or discarded at each
time step. GRUs are able to overcome the vanishing gradient
problem and are faster to train as compared to LSTMs due to
the fewer number of parameters to optimise.

2.2. Attention-based Rectified Linear Unit

The Attention-based Rectified Linear Unit (AReLU) is a learn-
able activation function that exploits an element-wise attention
mechanism [14]. AReLU amplifies positive elements and sup-
presses negative ones with learnt, data-adaptive parameters.
Since the attention module within AReLU learns element-wise
residues of the activated part of the input, the network training
is more resistant to gradient vanishing. AReLU’s learnt atten-
tive activation results in well-focused activations of relevant
regions of a feature map. With only two extra learnable pa-
rameters (alpha and beta) per layer, it facilitates fast network
training under small learning rates.

AReLU [14] represented as (F (z;, o, 3)) is defined using
a combination of an element-wise sign-based attention mecha-
nism L(z;, o, B) and a standard Rectified Linear Unit R(z;),
as described in equation 1.
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Fig. 1. Our proposed novel AR-GRU Architecture: The classi-
cal tanh activation in a GRU is replaced by an Attention-based
Rectified Linear Unit.

where X = {z;} is the activation layer’s input, {«, 8} €
R? are learnable parameters, C(+) clamps an input variable into
[0.01, 0.99] to prevent o from becoming zero, and o is the
sigmoid activation.

2.3. AR-GRU: Attention-based Rectified Linear Unit
within Gated Recurrent Units

The classical activation function in conventional GRUs is the
Hyperbolic Tangent (tanh). While there are inherent advan-
tages of using the tanh function, it has high computational
complexity due to dense activation computations and also is
susceptible to the vanishing gradient problem.

The different computational elements of GRU have largely
remained static. Adapting the functional units of GRUs could
result in significant performance improvements, specifically
for tasks as SER. Attention mechanisms have demonstrated
significant improvements in the context of deep learning.
Attention-based ReLLU is one such realisation of a learnable
attention mechanism in activation functions. As outlined, in
this work, we propose an Attention ReLU activation based
GRU unit described in Figure 1.

The integration of the Attention-based ReLU within GRUs
helps to capture long range interactions among the features.
Capturing long range interactions is of vital importance in
speech recognition, and specifically in SER due to the supra-
segmental nature of the phenomenon. Hence, the use of
AReLU-GRU is expected to help to capture these dependen-
cies, and boost the performance of SER systems in addition to
addressing the vanishing gradient problem.

In this work, we empirically determine the optimal initial
values of alpha and beta of the AReLU that would best suit
SER tasks. The default values of alpha (0.9) and beta (2) in
AReLU tend to work best for image recognition and image
segmentation tasks, as described in Chen et al. [14]. How-
ever, our experiments show that in the context of SER, these
default values tend to negatively impact the performance. Our
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investigations also demonstrate that using the ReLU activation
within GRUs already helps us to significantly boost the per-
formance. Hence, our methodology for optimising the alpha
and beta values for AReLU started with making the AReLU
resemble a ReLU-like activation function by using an alpha
of 0.01 and beta of -4. Since alpha controls the scale factor
for the negative values, a value of 0.01 in conjunction with
the clamp function would yield the least influence of negative
values. Beta controls the scale factor for the positive values
and having it as -4 nullifies the scale factor.

Once the integration of the AReLU within the GRU was
effective, we then explored amplifying the positive values.
This was done by using a beta value of 2 which makes the
result of the sigmoid function to be 0.88. Hence, the positive
values are scaled by a factor of 1.88. Scaling the positive
values this way gave us further boost in performance for the
SER task.

AReLU suppresses the negative values. Our experiments
demonstrate that suppressing the negative values using the
default AReLLU weighting parameters (with an alpha of 0.9)
negatively impacts the performance. We then explored clamp-
ing the negative values and rendering them closer to zero. This
ensured that there was no adverse impact in performance due
to the negative values.

Although we demonstrate the effectiveness of AR-GRU in
the context of SER, it is not limiting in its general applicability
in other applications, such as other speech-related or Natural
Language Processing (NLP) tasks.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Dataset Description

We conducted our experiments to examine the effectiveness
of the different activation functions in GRU and BiGRU in
the context of SER using the IEMOCAP dataset [15]. This
is a benchmark dataset widely used in the field of SER re-
search. This dataset contains 10 speakers and five sessions.
Each session comprises of two speakers engaging in different
conversational scenarios during their dialogue. In order to
compare with previous baseline performances, a four emotion
class classification, i. e., anger, happiness, sadness, and neutral,
is performed using 5 531 utterances. The distribution of the
four emotion classes in the 5 531 utterances are: anger: 19.9 %,
happiness: 29.5 %, neutral: 30.8 %, and sadness: 19.5 %.

3.2. Experimental Setup

We use the interaction-aware attention network (IAAN) [13]
as the baseline model for our empirical experiments of using
different activation functions within GRU and BiGRU. JAAN
utilises contextual information and affective influences from
previous utterances to model the emotion of the current ut-
terance. It employs a BiGRU for the current utterance of the
speaker and two GRUs for the preceding utterances of the

speaker and the interlocutor. The acoustic low-level descrip-
tors (LLDs) are extracted using the openSMILE toolkit [16]
based on the Emobase 2010 Config, including features such
as Mel-Frequency Cepstral Coefficients (MFCCs), pitch, and
their statistics in each short frame of an utterance.

We conducted our experiments by employing non-
learnable and learnable activation functions within the GRU
and BiGRU cells of the IAAN. We evaluate the performance
using both unweighted accuracy (UA) and weighted accuracy
(WA). We use 5-fold leave-one-session-out (LOSO) cross val-
idation and early stopping by observing the performance on
validation set in every 100 training epochs.

3.3. Baseline Methods

We compare our method with the following previous baseline
networks:

BIiLSTM+ATT][6]: A BiLSTM network which uses an
attention-based pooling layer on frame-level features.

MDNNT[17]: A multi-path deep neural network which
comprises of several local classifiers and a global classifier.

TAAN][13]: A GRU based network that utilises interaction-
aware attention to incorporate the influence of contextual in-
formation between interlocutors within a transactional frame.

3.4. Results and Analysis

As detailed in section 2, the main novelty of our work is on
diverse activation functions’ integration within the GRU cells.

We first present the results of utilising ReLLU activation
units within the GRU cells (R-GRU). Our novel integration of
using ReLU within GRU instead of the standard tanh activation
function gave us superior performance with UA of 67.7 % and
WA of 65.8 %. Our proposed R-GRU shows an improvement
of 1.4 % absolute for UA and 1.1 % for WA against the current
IAAN baseline. These results indicate that usage of ReLU
is highly beneficial and a better suited activation function for
GRU especially for SER tasks.

We next progress with further experiments of ReLU-like
activation functions being used within GRU cells. ReL.U acti-
vation is not a learnable activation, and hence has no trainable
parameters. This severely limits the usage of the ReLU acti-
vation function in broader contexts. Hence, as outlined, we
explore using AReLU as a learnable activation within GRU.

We now proceed to detail out five different variants of inte-
grating Attention ReLLU within GRU (AR-GRU) and explain
in detail each of these variants in this section. The first variant
of our proposed solution, AR-GRU (1) is the integration with
the default values of alpha of 0.9 and beta of 2 for AReLU but
this significantly impaired the performance and we obtained
very poor results. We include the results in Table 1 for the
sake of completeness. This result demonstrates that default
values of alpha and beta parameter do not work for our current
intended SER application.
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Table 1. The performance of the proposed models in comparison to state-of-the-art (upper part) and different network variants
(lower part) on the IEMOCAP corpus for 4-way SER. UAR chance level resembles 25 %.

AReLU parameters
Model alpha beta | % UA % WA
BILSTM +ATT Mirsamadi et al.(2017) - - 58.8 63.5
MDNN Zhou et al.(2018) - - 62.7 61.8
TAAN Yeh et al.(2019) - - 66.3 64.7
R-GRU based network (I) Experiment 1 - - 67.7 65.8
AR-GRU based network (I) Experiment 2 0.9 2.0 35.7 38.7
AR-GRU based network (II) | Experiment 3 0 2.0 66.3 64.7
AR-GRU based network (III) | Experiment 4 0.01 -4.0 66.9 65.4
AR-GRU based network (IV) | Experiment 5 0.01 2.0 67.9 66.6
AR-GRU based network (V) | Experiment 6 : Proposed method | 0.01 1.0 68.3 66.9

The next variant of AR-GRU (II) is the usage of AReLU
with alpha of 0.01 and beta of -4. These parameter values
make the AReLU very similar to ReLU as explained in the
methodology section. With these parameter values, we observe
UA of 66.9 % and WA of 65.4 %. This variant of ours gave an
improvement of 0.6 % for UA and 0.7 % for WA against the
TAAN baseline. The result from this experiment demonstrate
that AReLU does help to boost performance, but the ideal
parameter values needed to be empirically identified.

To identify the best combinations of alpha and beta, we
consider further experiments with varied values of alpha and
beta. The next combination explored is an alpha of 0 and beta
of 2. This proposed variant AR-GRU (III) nullifies the impact
of negative values similar to ReLU. To achieve this effect,
the clamp function operating on the alpha parameter of the
AReLU is adapted to have zero as the lower threshold. The AR-
GRU(III) achieved a UA and WA similar to the baseline IAAN
results. This demonstrates that clamping the negative values
does not yield any significant contribution in performance.
Having a small contribution of negative values does indeed
potentially help a GRU cell for SER tasks.

Our next variant of AR-GRU (IV) uses an alpha of 0.01
and beta of 2. Usage of alpha of 0.01 scales the negative values
by a factor of 0.01, and hence takes a lower contribution from
the negative values, as discovered to be beneficial from the AR-
GRU(III) experiments. Having beta of 2 enhances the positive
values by a factor of 1.88. AR-GRU (IV) achieves a UA of
67.9 % and WA of 66.6 %. This variant gives an improvement
of 1.6 % for UA and 1.9 % for WA against the IAAN baseline.

The previous experiment demonstrates that scaling the pos-
itive values positively impacts the GRU performance. The
exact magnification factor of the positive values was empir-
ically determined in our final experiment. In this variant of
AR-GRU (V), we use an alpha of 0.01 and beta of 1. Using a
value of 1 for beta enhances the positive values by a factor of
1.73. AR-GRU (V) achieves the best UA of 68.3 % and best
WA of 66.9 %. This variant gives an improvement of 2.0 %

for UA and 2.2 % for WA against the IAAN baseline. This
combination of alpha (0.01) and beta (1) for AReLU within
GRU manifests our novel proposed AR-GRU best suited for
SER on the considered task. Table 1 summarises the results
from all our diverse experiments in addition to the baseline
results for comparison.

4. CONCLUSION AND FUTURE WORK

We demonstrated that our proposed AR-GRU based network
with an alpha of 0.01 and beta of 1 boosts performance of
GRU for the considered SER task.

The influence of setting the initial values of alpha and
beta on the performance of AReLU has been described in the
work of [14]. From our experimental results, we conclude
that discovering the ideal initial values of alpha and beta is
of paramount importance specifically in integrating AReLU
within GRU and more so in the context of SER. In our subse-
quent studies, we intend to carry out an extensive grid-search
for optimal values of alpha and beta to reach the best benefits
of usage of AReLU within GRU.

Another dimension for further exploration is to experiment
with other activation functions within GRU. Recent research
in activation function have led to the discovery of several
non-learnable activations like SELU [18], EELU [19], Mish
[20], and learnable activations such as Comb [21] and PAU
[22]. A comparative study of usage of such learnable and
non-learnable activations within GRU is an interesting future
work. Our experiments demonstrated that a small contribution
of the negative values aids in getting improved results. In this
context, usage of non-learnable activation functions like Leaky
ReLU could be further explored. Other learnable activations
that handle negative values similar to AReL.U could also be
evaluated to analyse the impact on accuracy.
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