Pipeline Safety Early Warning Method for Distributed Signal using Bilinear CNN and LightGBM | IEEE Conference Publication | IEEE Xplore

Pipeline Safety Early Warning Method for Distributed Signal using Bilinear CNN and LightGBM


Abstract:

Oil and gas pipelines are known as the backbone of global energy, and securing their safety is crucial for energy supply. In this study, we utilized a novel machine learn...Show More

Abstract:

Oil and gas pipelines are known as the backbone of global energy, and securing their safety is crucial for energy supply. In this study, we utilized a novel machine learning method based on the spatiotemporal features of distributed optical fiber sensor signals to monitor the safety of oil and gas pipelines in real time. Encouraging empirical results on a large amount of data collected from real sites confirmed that our model could accurately locate and identify the damage events of a pipeline in real time under strong noise and various hardware conditions, and could effectively handle the signal drift problem. Furthermore, as a generalized tool, the proposed solution could be applied to other industrial inspection fields. Our codes and video demos are available at https://github.com/yyysjz1997/B-CNN_LGBM-PSEW.
Date of Conference: 06-11 June 2021
Date Added to IEEE Xplore: 13 May 2021
ISBN Information:

ISSN Information:

Conference Location: Toronto, ON, Canada

Contact IEEE to Subscribe

References

References is not available for this document.