
ar
X

iv
:2

10
3.

02
42

0v
1

 [
cs

.S
D

]
 3

 M
ar

 2
02

1

MULTI-VIEW AUDIO AND MUSIC CLASSIFICATION

Huy Phan∗1, Huy Le Nguyen2, Oliver Y. Chén3, Lam Pham4, Philipp Koch5,

Ian McLoughlin6, Alfred Mertins5

1Queen Mary University of London, UK, 2HCMC University of Technology, Vietnam
3University of Oxford, UK, 4Austrian Institute of Technology Vienna, Austria

5University of Lübeck, Germany, 6Singapore Institute of Technology, Singapore
∗Correspondence email: h.phan@qmul.ac.uk

ABSTRACT

We propose in this work a multi-view learning approach for audio

and music classification. Considering four typical low-level repre-

sentations (i.e. different views) commonly used for audio and music

recognition tasks, the proposed multi-view network consists of four

subnetworks, each handling one input types. The learned embedding

in the subnetworks are then concatenated to form the multi-view em-

bedding for classification similar to a simple concatenation network.

However, apart from the joint classification branch, the network also

maintains four classification branches on the single-view embedding

of the subnetworks. A novel method is then proposed to keep track

of the learning behavior on the classification branches and adapt their

weights to proportionally blend their gradients for network training.

The weights are adapted in such a way that learning on a branch

that is generalizing well will be encouraged whereas learning on a

branch that is overfitting will be slowed down. Experiments on three

different audio and music classification tasks show that the proposed

multi-view network not only outperforms the single-view baselines

but also is superior to the multi-view baselines based on concatena-

tion and late fusion.

Index Terms— multi-view learning, deep learning, audio clas-

sification, music classification, gradient blending

1. INTRODUCTION

Good embeddings are crucial for machine learning tasks [1, 2, 3].

For audio and music classification, in particular, such an embed-

ding can be learned from a variety of low-level features which have

been developed alongside the development of the research field, such

as Mel-scaled spectrogram [4, 5, 6, 7], Gammatone spectrogram

[8, 9, 2], Constant-Q transform (CQT) spectrogram [10, 11, 12],

and even raw waveform [13, 14]. Oftentimes, recognition results

obtained from embeddings learned from different low-level inputs

vary in the sense that one embedding is good for some target classes

while another is good for some other target classes. This implies

that the embeddings are complement and the low-level inputs can

be reasonably considered as different views of the target data. Intu-

itively, owing to their complementarity, jointly learning from these

views should leverage their individual strength and gives rise to per-

formance gain on a task at hand [15, 16]. However, it is not always

the case in practice as a naive fusion scheme, e.g. concatenation

[2, 17, 18], may result in performance degradation rather than im-

provement, i.e. the multi-view performance could be worse than

that of the best single view [17, 18]. The reason is that different

single-view subnetworks learn at different rates and converge/overfit

at different times during the training course. As a result, fusing out-

of-sync single-view subnetworks via concatenation results in a sub-

optimal multi-view model. Late fusion is another common approach

for fusing information from multiple views; however, separate train-

ing single-view networks is unable to take into account interaction

between the views.

Inspired by prior work in [17, 18], we propose a novel multi-

view learning method based on deep learning for audio and music

classification that overcomes the aforementioned issues. In the pro-

posed approach, a multi-view network is designed so that we are

able to gain assess to the convergence/overfitting behavior of the

constituent single-view subnetworks. This then allows us to individ-

ualize their learning during the training process. In intuitive, learn-

ing on subnetworks that are genaralizing well is encouraged whereas

learning on subnetworks that are ovefitting is slowed down. This

is accomplished by assigning different weights to the subnetworks’

losses prior to blending their gradients [17, 18]. The weights are

adaptively adjusted according to the subnetworks’ learning behav-

ior. By doing this, we are able to regulate the contribution of each

view into the multi-view embedding rather than even their contribu-

tion as in the case of simple concatenation. Our experiments on three

different audio and music classification tasks (environmental sound

classification, audio scene classification, and music genre classifica-

tion) show that the multi-view embedding learned via the proposed

method consistently results in better performance than that obtained

by all the single-view baselines and the multi-view baselines based

on concatenation and late fusion.

2. LEARNING MULTI-VIEW AUDIO/MUSIC EMBEDDING

2.1. Network architecture

We adopt four low-level features, including Mel-scale spectrogram,

Gammatone spectrogram, CQT spectrogram, and raw waveform,

which are most widely used for audio and music analysis under

deep learning paradigms. They are considered as different views

of the underlying data distribution of a audio/music classification

task at hand. The proposed network for learning multi-view embed-

ding is illustrated in Fig. 1. It consists of four subnetworks, each of

which is to process one of the low-level inputs. The multi-view em-

bedding is formed by concatenating the embeddings learned by the

view-specific subnetworks. However, apart from the concatenation

branch, the view-specific CRNNs also maintain their own classifi-

cation branches which serve as a gateway to access their learning

behavior. The subnetworks are realized by convolutional recurrent

neural networks (CRNNs) that are described below.

http://arxiv.org/abs/2103.02420v1

Mel Gammatone CQT Raw

CRNN CRNN CRNN CRNN

Attention Attention Attention Attention

softmax softmax softmax softmax

softmax

ymel ygam ycqt yraw

y

Fig. 1. Illustration of the network for learning multi-view embed-

ding. The dash lines represent the gradient backpropagation flows.

2D CRNNs: The 2D inputs (i.e. Mel-scale, Gammatone, and

CQT spectrogram) have a general size of T × F where T is the

number of time frames and F frequency bands. The CRNNs corre-

sponding to the 2D inputs share a similar network architecture whose

configuration is shown in Table 1. The architecture features six con-

volutional layers, each associated with Rectified Linear Unit (ReLU)

activation [19], batch normalization [20], and a max pooling layer.

The max pooling layers have a common kernel size of 2 × 1 and

stride 1× 1 to reduce size of spectral dimension by half while main-

taining the temporal dimension of the input. On top of the convolu-

tional layers, a bidirectional recurrent neural network (biRNN) layer

is employed for sequential modelling on the time dimension. It is

realized by Gated Recurrent Units (GRUs) [21]. The sequence of re-

current outputs is then reduced to a feature vector (i.e. view-specific

embedding) via spatio-temporal attention pooling suggested in [8].

For classification purpose, the 2D CRNNs make use of two fully-

connected layers with ReLU activation, followed by a final output

layer with softmax. A dropout rate of 0.1 is applied to the convolu-

tional layers, the recurrent layers, and the fully-connected layers.

1D CRNN: The 1D CRNN’s configuration is shown in Table 2.

Out of eight convolutional layers, the first two (conv01 and conv02)

coupled with the max pooling layer (pool02) are tailored to trans-

form the raw input into a 2D representation as in [14, 13]. The rest

of the network can then be parametrized similar to the 2D CRNNs

described above, except for the conv1 and pool1 for which larger

(temporal) kernel sizes are set to efficiently deal with the larger (tem-

poral) input as well as to shorten its temporal dimension.

Beside the single-view classification branches on the CRNNs,

classification on the multi-view embedding is carried out via two

fully-connected layers with 4096 hidden units and ReLU activation,

followed by a final output layer with softmax. Let y denote the one-

hot encoding ground-truth and ŷ
(k) denote the output of the classi-

fication branch k ∈ {mel, gam, cqt, raw,⊕}. We use ⊕ to denote

the multi-view classification branch. The cross-entropy loss induced

by the branch k on a set of M samples reads:

L(k) = −
1

M

∑M

m=1
ym log(ŷ(k)

m). (1)

The total loss used for training at the training step n is computed by:

L(n) =
∑

k
w

(k)(n)L(k)(n), (2)

where w(k)(n) denotes the weight of the classification branch k at

the training time n. w(k)(n) is adapted during the training process

according to the learning behavior of the branch k.

Table 1. Configuration of the 2D CRNNs. The output shape is of

the format (time, frequency, channel). Here, the number of ker-

nels Fl = (32, 64, 128, 128, 256, 512) for six convolutional layers

indexed by l = (1, 2, 3, 4, 5, 6).

Layer Filter size Stride #filters Padding Output shape

Input (T, 64, 1)
conv-l (3, 3) (1, 1) Fl SAME (T, 64

2l−1
, Fl)

pool-l (1, 2) (1, 1) VALID (T, 64

2l
, Fl)

reshape (T, 512)
biRNN 2 · 256 (T, 512)
attention 64 (512,)
fc1 1024 (1024,)
fc2 1024 (1024,)
fc3 #classes (#classes,)

Table 2. Configuration of the 1D CRNN. The output shape is of the

format (time, frequency, channel). Here, the number of kernels

Fl = (64, 128, 128, 256, 512) for five convolutional layers indexed

by l = (2, 3, 4, 5, 6).

Layer Filter size Stride #filters Padding Output shape

Input (66, 650, 1, 1)
conv01 (64, 1) (2, 1) 32 VALID
conv02 (16, 1) (2, 1) 64 VALID (16, 640, 1, 64)
pool02 (64, 1) (64, 1) VALID (260, 1, 64)
reshape (260, 64, 1)
conv1 (5, 3) (1, 1) 32 SAME (260, 64, 32)
pool1 (4, 2) (4, 2) VALID (65, 32, 32)
conv-l (3, 3) (1, 1) Fl SAME (65, 64

2l−1
, Fl)

pool-l (1, 2) (1, 1) VALID (65, 64

2l
, Fl)

reshape (65, 512)
biRNN 2 · 256 (65, 512)
attention 64 (512,)
fc1 1024 (1024,)
fc2 1024 (1024,)
fc3 #classes (#classes,)

2.2. Adaptive gradient blending

Similar to [17, 18], learning behavior on the branch k can be as-

sessed via the generalization measure G(k) and the overfitting mea-

sure O(k). In intuition, G(k) represents the information about the

target distribution gained via training and O(k) represents the gap

between information gain on the training set and the target distribu-

tion. G(k) and O(k) at the training step n are approximated as:

G
(k)(n) ≈ L

∗(k)
⋄ − L

(k)
⋄ (n), (3)

O
(k)(n) ≈ (L

∗(k)
tr − L

(k)
tr (n))− (L∗(k)

⋄ − L
(k)
⋄ (n)). (4)

In (3) and (4), L
(k)
tr (n) and L

(k)
⋄ (n) denote the loss on a training set

and the loss on a test set (i.e. the true loss) at the training step n,

respectively. L
∗(k)
tr and L

∗(k)
⋄ denote the training and true loss refer-

ences, respectively. Since the true loss is unknown, we approximate

it by the loss on a validation set. The weight w(k) for the branch k is

then computed as the ratio of generalization and overfitting measure:

w
(k)(n) =

1

Z

G(k)(n)

O(k)2(n)
, (5)

where Z is a normalization factor. A network branch which is gen-

eralizing (i.e., large Gk and small Ok) will have a larger weight to

encourage its learning. In contrast, a network branch which is over-

fitting (i.e., small Gk and large Ok) will have a smaller weight to

discourage its learning. A square for Ok in (5) is to avoid the situ-

ation when an underfitting network branch still scores very well on

the generalization-over-overfitting ratio and receives a large weight.

Algorithm 1 Computation of an adaptive weight

1: procedure ADAPTIVEWEIGHT(Ltr, L⋄, L
∗

tr, L
∗

⋄,W)

2: Input: Ltr[1 . . . n]: list of training loss values

3: L⋄[1 . . . n]: list of true loss values

4: L∗

tr: current best training loss value

5: L∗

⋄
: current best true loss value

6: W : smoothing window size

7: Output: w(n): weight at the training time n

8: L̄tr(n)=mean(Ltr[(n−W) . . . n]) ⊲ Smoothed training loss

9: L̄⋄(n)=mean(L⋄[(n−W) . . . n]) ⊲ Smoothed true loss

10: G(n) = L∗

⋄ − L̄⋄(n) ⊲ Eq. (3)

11: O(n) = (L∗

tr − Ltr(n))− (L̄∗

⋄ − L̄⋄(n)) ⊲ Eq. (4)

12: w(n) = 1
Z

G(n)

O2(n)
⊲ Eq. (5)

13: if L̄tr < L∗

tr then L∗

tr = L̄tr ⊲ Update best training loss

14: if L̄⋄ < L∗

⋄ then L∗

⋄ = L̄⋄ ⊲ Update best true loss

Equations (3) and (4) suggest that the accuracy of the approx-

imations for G(k) and O(k) depends on the references L
∗(k)
tr and

L
∗(k)
⋄ . In [17, 18], the losses L

(k)
tr (0) and L

(k)
⋄ (0) at time n = 0 (i.e.

right after the network initialized with random weights) were used

for this purpose. However, we empirically found that these fixed ref-

erences resulted in unsatisfactory performance. We conjecture that

it is most likely due to the bias to a specific random initialization of

the network (i.e. different random initializations will lead to various

approximation accuracy). To overcome this, we propose to use the

best losses up the current time n for references. Furthermore, these

references are also adapted during the training course. Furthermore,

in audio classification tasks, even though the overall trend of the loss

curves are smooth, they are noisy in short term, we therefore smooth

the losses with a history window of size W before updating the loss

references to avoid being stuck in local minima. The procedure for

computing the weight w(k) is devised in Algorithm 1.

2.3. Self-ensemble

Since the multi-view network has multiple outputs (i.e. the single-

view classification outputs and the multi-view classification output)

which can be aggregated to produce a self-ensemble of decisions:

P (y = c) =
1

5

∑

k

(

w
(k)
⋄ P

(k)(y = c)
)

, (6)

where P (k)(y = c) denotes the probability that the classification

branch k predicts the category c ∈ {1, . . . , C} out of C categories.

We use w
(k)
⋄ to denote the weight of the classification branch k found

with the final model. The final output label is then determined as:

ŷ = argmax
c

P (y = c). (7)

3. EXPERIMENTS

3.1. Experimental setup

3.1.1. Datasets

We employed three databases to conduct experiments on three audio

and music classification tasks: environmental sound classification,

audio scene classification, and music genre classification.

ESC-50 [6]: This dataset consists of 2,000 monaural samples

in total which are evenly distributed among 50 environmental sound

categories. Each sample has a length of roughly 5 seconds sampled

at 44.1 kHz. The dataset was divided into 5 folds and we adhered to

[6] to conduct 5-fold cross validation.

DCASE2016 Task 1 [22]: This dataset was used in the audio

scene classification (Task 1) of the DCASE 2016 challenge [22]. It

consists of 1,560 binaural samples evenly distributed among 16 au-

dio scene categories. The data was recorded with a sampling fre-

quency of 44.1 kHz and each sample has a length of 30 seconds. We

used the development set for training and the evaluation set for test-

ing in the experiments. Note that, for simplicity, binaural audio was

reduced to monaural before experimentation.

GTZAN [23]: This dataset has been widely used for evaluation

of music genre classification. It consists of 10 genres with 100 audio

files each, all having a length of 30 seconds and sampling frequency

of 22,050 Hz. We conducted 10-fold cross validation following [23].

3.1.2. Feature extraction

To extract the 2D low-level features, a raw audio signal was trans-

formed into a log Mel-scale spectrogram using F = 64 Mel-scale

filters in the frequency range up to Nyquist rate. Similarly, log Gam-

matone spectrogram was extracted using F = 64 Gammatone fil-

ters. A window size of 40ms and 50% overlap were commonly used.

Log CQT spectrogram [24] was extracted using Librosa [25] with

F = 64 frequency bins, 12 bins per octave, and a hop length of 512

(for 22,050 Hz sampling rate) or 1024 (for 44.1 kHz sampling rate).

Note that with this setting, the time dimension of the CQT spec-

trogram is smaller than that of the Mel-scale and Gammatone ones.

A 30-second snippet at 44.1 kHz sampling rate results in a Mel-scale

and a Gammatone spectrogram of size 1499× 64 while the resulted

CQT spectrogram is of size 1292 × 64.

3.1.3. Parameters

The network was trained using Adam optimizer [26] for E = 3000
epochs (ESC-50) and E=1500 epochs (DCASE 2016 and GTZAN)

with a minibatch size of 64. We used the Mel-scaled and Gammatone

inputs of length T = 75 frames, the CQT input of length of T =
65 frames, and the raw waveform input of length 66, 650 samples

(with 44.1 kHz sampling rate) or 33,330 samples (with 22,050 Hz

sampling rate). It should be noted that when the raw input has length

of 33,330, the pool02 layer in the 1D CRNN (cf. Table 2) had its

kernel size and stride reduced by half.

The learning rate was initially set to 2 × 10−4 and was expo-

nentially reduced with a rate of 0.8 after 0.1E, 0.2E, and 0.3E
epochs. In addition, the first 10 epochs were used as a warm-up

period in which the network was trained with a small learning rate

of 2 × 10−5. For model selection and for approximating the true

loss in (3) and (4), a validation set was randomly drawn and left out.

More specifically, samples from two audio sources per category in

case of ECS-50, samples from 10% of audio sources per category in

case of DCASE2016, and 10% of samples in case of GTZAN were

used for this purpose. During training, the network that resulted in

best validation accuracy was retained. Note that, in order to compute

the training loss in (4), evaluating the network on the entire training

set would be computationally expensive. Instead, we sampled and

fixed a small subset of training examples (roughly the same size as

the validation set) for approximation.

During testing, for an audio file of length S seconds, S data

samples were evenly sampled and presented to the trained network

for classification. The global classification decision was obtained by

aggregating the segment-wise decisions via averaging.

3.1.4. Baselines

To assess the efficacy of the proposed multi-view method, we con-

structed four single-view baselines and two multi-view baselines for

×10
3

×10
3

×10
3

Multi-view

Concat.

Mel

Gam

CQT

Raw

Multi-view Mel

Gam

CQT

Raw

Multi-view Mel

Gam

CQT

Raw

(a) (b) (c)

M
a
g
n
it
u
d
e

Fig. 2. ESC-50: (a) The test loss curves (averaged over 5 cross-validation folds) of the classification branches of the multi-view network; (b)

The weights assigned to the classification branches of the multi-view network during training (only the first cross-validation fold is shown);

(c) The test loss curves (averaged over 5 cross-validation folds) of the multi-view network and the baselines during training.

comparison. The four single-view baselines were the CRNN sub-

networks in Fig. 1 that were trained independently on the individual

low-level inputs. The first multi-view baseline had a similar archi-

tecture to the proposed multi-view network (cf. Fig. 1) but relied on

simple concatenation fusion. The second multi-view baseline was a

late-fusion system that combined the independent single-view base-

lines by taking average of their classification probabilities.

3.2. Experimental results

The classification accuracies obtained by the proposed multi-view

method and the baselines over the experimental databases are shown

in Table 3. On the one hand, among the single-view baselines, the

ones using the Mel-scale and Gammatone spectrogram inputs results

in better performance than those using the CQT spectrogram and

raw inputs. This result is consistent with the finding in [11] and also

reflects the fact that the former two are more popular than the latter

two in various audio/music recognition tasks. Although combining

multiple views via the simple concatenation and late fusion leads to

performance gains in all the experimental databases, it is disputable

whether late fusion works better than concatenation since the former

outperforms the latter on ESC-50 and GTZAN whereas the opposite

result was seen on DCASE2016.

On the other hand, the proposed multi-view network consis-

tently outperforms not only the single-view baselines but also the

multi-view baselines over all three tasks. More specifically, our net-

work achieves an accuracy gain of 0.85%, 1.28%, and 1.1% abso-

lute on ESC-50, DCASE2016, and GTZAN over the best baseline

(i.e. late fusion, concatenation, and late fusion), respectively. The

superiority of the proposed method is also reflected by its lower test

loss as shown in Fig. 2 (c). The gain via self-ensembling is even

better, achieving 1.55%, 1.53%, and 1.4% absolute, respectively.

These results suggest that the proposed multi-view learning

method is more efficient than the popular concatenation and late

fusion methods. It can be explained that the proposed method offers

a mechanism to harmonize learning rhythms of the individual views

and cohere them to consolidate the joint representation. This mech-

anism is partly illustrated in Fig. 2 (a) and (b), particularly from

the training step 0 to 10,500. In this period, the 2D branches were

converging faster than the 1D branch and were given higher weights

until they started degenerating around the training step 7,500. The

weights for the 2D branches were then reduced to slow down their

learning while the weight for the 1D branch, which was still con-

verging well at the time, was steadily increased to accelerate its

learning. It is most likely that such a mechanism is lacking in the

simple concatenation whereas late fusion of the single-view models

Table 3. Results obtained by the studied speech enhancement sys-

tems on the objective evaluation metrics.

ESC-50 DCASE2016 GTZAN

Self-ensemble 87.35 85.38 91.10

Multi-view 86.65 85.13 90.80

Late fusion 85.80 82.05 89.70

Concat. fusion 84.44 83.85 89.00

Mel 80.15 77.18 87.30

Gammatone 76.90 77.95 86.20

CQT 58.30 75.38 83.10

Raw 75.60 57.44 81.50

is suboptimal as separate training ruled out cross-view interaction.

It should be emphasized that our primary goal in this work is to

study and compare the proposed multi-view learning method to the

common multi-view fusion methods with respect to a fixed network

architecture rather than a comprehensive performance comparison

with existing works. We, therefore, neither tailored the network ar-

chitecture for the individual tasks [27, 28, 29] nor explored multi-

channel combinations [30, 28, 16]. Readers should be informed

that, for the databases we adopted in this study, better performance

was reported in other works, such as [27, 29] for ESC-50, [16, 31]

for DCASE2016, and [28] for GTZAN. Incorporating the propose

multi-view method to existing state-of-the-art networks is worth fur-

ther investigation.

4. CONCLUSIONS

We presented in this work a novel multi-view learning approach for

audio and music classification. The proposed multi-view network

was designed to have multiple CRNN subnetworks, each handling

one input view. The multi-view embedding was then produced by

concatenating the embeddings learned by the single-view subnet-

works. In addition to the classification branch on the multi-view

embedding, the network also accommodated classification branches

on the single-view subnetworks that offered a means to assess their

learning behavior. Each classification branch was assigned to a

weight that was adapted during training to reflect whether it is gen-

eralizing well or overfitting the data. The gradients from different

classification branches were blended according to their weights for

network training. In this way, different views were supposed to

contribute proportionally to the multi-view embedding depending

on their learning behavior. The efficacy of the proposed method was

demonstrated in three different audio and music classification tasks

on which the proposed method outperformed all the single-view and

multi-view baselines.

5. REFERENCES

[1] S. Pascual, M. Ravanelli, J. Serrà, A. Bonafonte, and Y. Ben-

gio, “Learning problem-agnostic speech representations from

multiple self-supervised tasks,” in Proc. Interspeech, pp. 161–

165.

[2] H. Phan, L. Hertel, M. Maass, P. Koch, R. Mazur, and

A. Mertins, “Improved audio scene classification based on

label-tree embeddings and convolutional neural networks,”

IEEE/ACM Trans. on Audio, Speech and Language Process-

ing, vol. 25, no. 6, pp. 1278–1290, 2017.

[3] J. Cramer, H.-H. Wu, J. Salamon, and J. P. Bello, “Look, listen,

and learn more: Design choices for deep audio embeddings,”

in Proc. ICASSP, 2019.

[4] S. S. R. Phaye, E. Benetos, and Y. Wang, “Subspectralnet - us-

ing sub-spectrogram based convolutional neural networks for

acoustic scene classification,” in Proc. ICASSP, 2019.

[5] H. Phan, O. Y. Chén, P. Koch, L. Pham, I. McLoughlin,

A. Mertins, and M. De Vos, “Unifying isolated and overlapping

audio event detection with multi-label multi-task convolutional

recurrent neural networks,” in Proc. ICASSP, 2019.

[6] K. J. Piczak, “Esc: Dataset for environmental sound classifica-

tion,” in Proc. ACM Multimedia, pp. 1015–1018.

[7] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional

recurrent neural networks for music classification,” in Proc.

ICASSP.

[8] H. Phan, O. Y. Chén, L. Pham, P. Koch, M. De Vos, I. V.

McLoughlin, and A. Mertin, “Spatio-temporal attention pool-

ing for audio scene classification,” in Proc. Interspeech, 2019,

pp. 3845–3849.

[9] Z. Zhang, S. Xu, S. Zhang, T. Qiao, and S. Cao, “Learning at-

tentive representations for environmental sound classification,”

IEEE Access, vol. 7, pp. 130327–130339, 2019.

[10] S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end neural

network for polyphonic piano music transcription,” IEEE/ACM

Transactions on Audio, Speech and Language Processing, vol.

5, no. 24, pp. 927–939, 2016.

[11] M. Huzaifah, “Comparison of time-frequency representa-

tions for environmental sound classification using convolu-

tional neural networks,” arXiv:1706.07156, 2017.

[12] T. Lidy and A. Schindler, “Cqt-based convolutional neural net-

works for audio scene classification,” in DCASE 2016 Techni-

cal Report, 2016, pp. 1032–1048.

[13] W. Dai, C. Dai, S. Qu, J. Li, and S. Das, “Very deep convolu-

tional neural networks for raw waveforms,” in Proc. ICASSP,

2017.

[14] T. Harada Y. Tokozume, Y. Ushiku, “Learning from between-

class examples for deep sound recognition,” in Proc. ICLR,

2018.

[15] I. McLoughlin, Z. Xie, Y. Song, H. Phan, and R. Palaniappan,

“Time-frequency feature fusion for noise robust audio event

classification,” Circuits, Systems, and Signal Processing, , no.

39, pp. 1672–1687, 2020.

[16] L. Pham, H. Phan, T. Nguyen, R. Palaniappan, A. Mertins, and

I. McLoughlin, “Robust acoustic scene classification using a

multi-spectrogram encoder-decoder framework,” Digital Sig-

nal Processing, vol. 110, 2021.

[17] W. Wang, D. Tran, and M. Feiszli, “What makes training multi-

modal networks hard?,” in Proc. CVPR, 2020.

[18] H. Phan, O. Y. Chén, P. Koch, A. Mertins, and M. De Vos,

“XSleepNet: Multi-view sequential model for automatic sleep

staging,” arXiv preprint arXiv:2007.05492, 2020.

[19] V. Nair and G. E. Hinton, “Rectified linear units improve re-

stricted Boltzmann machines,” in Proc. ICML, 2010.

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating

deep network training by reducing internal covariate shift,” in

Proc. ICML, 2015, pp. 448–456.

[21] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representa-

tions using RNN encoder-decoder for statistical machine trans-

lation,” in Proc. EMNLP, 2014, pp. 1724–1734.

[22] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for

acoustic scene classification and sound event detection,” in

Proc. EUSIPCO, 2016.

[23] G. Tzanetakis and P. Cook, “Musical genre classification of

audio signals,” IEEE Trans. on Speech and Audio Processing,

vol. 10, no. 5, pp. 293–302, 2002.

[24] C. Schoerkhuber and A. Klapuri, “Constant-q transform tool-

box for music processing,” in Proc. 7th Sound and Music Com-

puting Conference, 2010.

[25] B. McFee, C. Raffel, D. Liang, D. P. W. Ellis, M. McVicar,

E. Battenberg, and N. Oriol, “Librosa: Audio and music signal

analysis in python,” in Proc. 14th Python in Science Confer-

ence, 2015, pp. 18–25.

[26] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic

optimization,” in Proc. International Conference on Learning

Representations (ICLR), 2015, pp. 1–13.

[27] H. Wang, Y. Zou, D. Chong, and W. Wang, “Environmental

sound classification with parallel temporal-spectral attention,”

in Proc. Interspeech, 2020.

[28] C. Liu, L. Feng, G. Liu, H. Wang, and S. Liu, “Bottom-up

broadcast neural network for music genre classification,” Pat-

tern Recognition Letters, 2019.

[29] A. Guzhov, F. Raue, J. Hees, and A. Dengel, “ESResNet: En-

vironmental sound classification based on visual domain mod-

els,” arXiv preprint arXiv:2004.07301, 2020.

[30] Yoonchang Han and Kyogu Lee, “Convolutional neural net-

work with multiple-width frequency-delta data augmentation

for acoustic scene classification,” Tech. Rep., DCASE2016

Challenge, September 2016.

[31] Y. Yin, R. R. Shah, and R. Zimmermann, “Learning and fusing

multimodal deep features for acoustic scene categorization,” in

Proc. ACM Multimedia, 2018, pp. 1892–1900.

	1 Introduction
	2 Learning multi-view audio/music embedding
	2.1 Network architecture
	2.2 Adaptive gradient blending
	2.3 Self-ensemble

	3 Experiments
	3.1 Experimental setup
	3.1.1 Datasets
	3.1.2 Feature extraction
	3.1.3 Parameters
	3.1.4 Baselines

	3.2 Experimental results

	4 Conclusions
	5 References

