
EMFORMER: EFFICIENT MEMORY TRANSFORMER BASED ACOUSTIC MODEL FOR
LOW LATENCY STREAMING SPEECH RECOGNITION

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-Feng Yeh, Julian Chan,
Frank Zhang, Duc Le, Mike Seltzer

Facebook AI

ABSTRACT
This paper proposes an efficient memory transformer Emformer for
low latency streaming speech recognition. In Emformer, the long-
range history context is distilled into an augmented memory bank to
reduce self-attention’s computation complexity. A cache mechanism
saves the computation for the key and value in self-attention for the
left context. Emformer applies a parallelized block processing in
training to support low latency models. We carry out experiments
on benchmark LibriSpeech data. Under average latency of 960 ms,
Emformer gets WER 2.50% on test-clean and 5.62% on test-other.
Comparing with a strong baseline augmented memory transformer
(AM-TRF), Emformer gets 4.6 folds training speedup and 18% rel-
ative real-time factor (RTF) reduction in decoding with relative WER
reduction 17% on test-clean and 9% on test-other. For a low latency
scenario with an average latency of 80 ms, Emformer achieves WER
3.01% on test-clean and 7.09% on test-other. Comparing with the
LSTM baseline with the same latency and model size, Emformer
gets relative WER reduction 9% and 16% on test-clean and test-
other, respectively.

Index Terms— Low Latency, Transformer, Emformer

1. INTRODUCTION

Transformers [1] have achieved dominated performance for various
tasks in natural language processing area [2, 3, 4]. Rather than using
memory state to capture long-range dependencies in recurrent neu-
ral networks, the multi-head self-attention method connects arbitrary
positions in the whole sequence directly in parallel.

Recently, transformer-based model architectures have also
been successfully applied to automatic speech recognition (ASR)
area across various modeling paradigms, including sequence-to-
sequence [5, 6, 7, 8, 9], neural transducer [10, 11, 12], Connectionist
temporal classification (CTC) [13, 14] and traditional hybrid [15, 16]
systems.

Unlike most natural language processing tasks, many ASR
applications deal with streaming scenarios challenging for vanilla
transformers. The streaming recognizer needs to produce output
given partially available speech utterance rather than entire ut-
terance. Several methods advance the transformer for streaming
speech recognition. The work [15, 10, 17] proposed to constrain
the attention computation with a limited length of look-ahead in-
puts. However, these methods have a significant delay due to the
look-ahead context leaking issue where essential look-ahead context
grows linearly with the number of transformer layers stacking on top
of one another. A scout network is proposed in [9] to detect the word
boundary. In scout networks, only the context information before
the word boundary is used by the transformer to make predictions.
However, the scout network does not address the heavy self-attention
computation that grows quadratically with the left context length. A

streaming transformer with augmented memory (AM-TRF) is pro-
posed in [18] to reduce latency and the self-attention computation.

AM-TRF uses a similar block processing method as [19]. The
block processing chunks the whole utterance into multiple segments.
To reduce the computation in capturing the long-range left context,
AM-TRF introduces a memory bank. Each vector in the memory
bank is an abstract embedding from the previous one segment. The
direct left context block from the current segment and look-ahead
context block provides context information for current segment
recognition in addition to the memory bank. However, AM-TRF
has duplicated computations for the direct left context block in both
training and decoding. The memory bank carries over the context
information from previous segments in a similar auto-regression
way as recurrent neural networks. The inherent auto-regression
characteristic makes AM-TRF challenging to parallelize the block
processing in training.

In this paper, we propose the Emformer that improves the AM-
TRF from the following aspects. First, Emformer removes the du-
plicated computation from the left context block by caching the key
and value in previous segments’ self-attention. Second, rather than
passing the memory bank within the current layer in AM-TRF, in-
spired by transformer-xl [2] and its applicatin in speech recogni-
tion [20], Emformer carries over the memory bank from the lower
layer. Third, Emformer disables the summary vector’s attention with
memory bank to avoid overweighting the most left part of context in-
formation. Finally, Emformer applies a parallelized block process-
ing training method, which is important to train Emformer for low
latency speech recognition.

To verify the performance of the proposed method, we carry out
experiments on LibriSpeech [21]. More experiments using indus-
try dataset with variant scenarios are in [22]. Under the average
latency of 640 ms constraint, comparing with AM-TRF, Emformer
gets relative WER reduction 17% on test-clean and 9% on test-other.
Meanwhile, Emformer reduces the training time by almost 80% and
decoding RTF by 18%. For a low latency scenario with an aver-
age latency of 80 ms, Emformer saves more than 91% computation
from AM-TRF and obtain WER 3.01% on test-clean and 7.09% on
test-other. According to our knowledge, this is the first work to give
streaming transformer results on LibriSpeech with such low latency.
Under the average latency of 960 ms and 640 ms constraint, Em-
former also gives the best result on LibriSpeech so far.

2. EMFORMER

Emformer improves over the AM-TRF. The following subsection
gives a short introduction to AM-TRF.

2.1. AM-TRF
Figure (1a) illustrates the operations in one AM-TRF layer. A
sequence of input feature vectors are chunked into multiple non-

ar
X

iv
:2

01
0.

10
75

9v
4

 [
cs

.S
D

]
 3

0
D

ec
 2

02
0

(a) AM-TRF (b) Emformer

Fig. 1: Comparison of AM-TRF with Emformer

overlapping segments Cn
1 , · · · ,Cn

I−1, where the i denotes the index
of segment, and n the layer’s index. In order to reduce boundary
effect, left and right contextual blocks, Ln

i and Rn
i , are concatenated

with Cn
i to form a contextual segment Xn

i = [Ln
i ,C

n
i ,R

n
i]. At

the i-th segment, the n-th AM-TRF layer accepts Xn
i and a bank of

memory vector Mn
i = [mn

1 , · · · ,mn
i−1] as the input, and produces

Xn+1
i = [Ln+1

i ,Cn+1
i ,Rn+1

i] and mn
i as the output, whereas

Xn+1
i is feed to the next layer and mn

i is inserted into the mem-
ory bank to generate Mn

i+1 and carried over to the next segment.
After all the AM-TRF layers, the center blocks {CN−1

i }I−1
i=0 are

concatenated as the encoder output sequence; the contextual blocks
{LN−1

i }I−1
i=0 and {RN−1

i }I−1
i=0 are discarded.

At the core of each AM-TRF layer, there is a modified atten-
tion mechanism which attends to the memory bank and yields a new
memory vector at each segment:

X̂n
i =LayerNorm(Xn

i) (1)

Kn
i =Wk[M

n
i , X̂

n
i], (2)

Vn
i =Wv[M

n
i , X̂

n
i], (3)

[Zn
L,i,Z

n
C,i,Z

n
R,i] =Attn(WqX̂

n
i ,K

n
i ,V

n
i) +Xn

i (4)
mn

i =Attn(Wqs
n
i ,K

n
i ,V

n
i) (5)

whereas Zn
L,i,Z

n
C,i and Zn

R,i are the attention output for Ln
i ,C

n
i and

Rn
i respectively; sni is the mean of center block Cn

i ; Attn(q;k,v)
is the attention operation defined in [1] with q , k and v being the
query, key and value, respectively.

Zn
L,i,Z

n
C,i,Z

n
R,i are passed to a point-wise feed-forward net-

work (FFN) with layer normalization and residual connection to gen-
erate the output of this AM-TRF layer, i.e.,

X̂n
i+1 = FFN(LayerNorm([Zn

L,i,Z
n
C,i,Z

n
R,i])) (6)

Xn+1
i = LayerNorm(X̂n+1

i + [Zn
L,i,Z

n
C,i,Z

n
R,i]) (7)

where FNN is a two-layer feed-forward network with Relu non-
linearity. The last layer normalization in Eq. (7) is used to prevent a
path to bypass all the AM-TRF layers.

2.2. Emformer
As shown in [18], given the similar latency constraint, AM-TRF
has outperformed previous streaming transformer models. However,
there are several issues with AM-TRF. The usage of the left con-
text is not efficient. AM-TRF training relies on the sequential block

processing that is not suitable for low latency model training. Hav-
ing observed these limitations, we proposed a new streamable trans-
former architecture, namely, Emformer. One layer of Emformer is
demonstrated in Figure (1b). The following subsections describe the
important improvements made in Emformer.

2.2.1. Cache key and value from previous segments
As illustrated in Figure (1a), for the i-th segment, the embedding
of the left context Ln

i needs to be re-computed for every step, even
though Ln

i is overlapped with Cn
i−1 (or possibly even more previous

center blocks). Thus we only need to cache the projections from
the previous segments. As shown in Figure (1b), Emformer only
computes the key, value projections for the memory bank, center, and
right context; Emformer saves the computation of query projection
of left context, as it does not need to give output from the left context
block for the next layer. Compared with AM-TRF, the attention part
in Emformer operates in the following sequence:

[Ĉn
i , R̂

n
i] = LayerNorm([Cn

i ,R
n
i]) (8)

Kn
i = [WkM

n
i ,K

n
L,i,WkC

n
i ,WkR

n
i], (9)

Vn
i = [WvM

n
i ,V

n
L,i,WvC

n
i ,WvR

n
i], (10)

Zn
C,i = Attn(WqĈ

n
i ,K

n
i ,V

n
i) +Cn

i (11)

Zn
R,i = Attn(WqR̂

n
i ,K

n
i ,V

n
i) +Rn

i (12)
mn

i = Attn(Wqs
n
i ;K

n
i ,V

n
i) (13)

where Kn
L,i and Vn

L,i are the key and value copies from previous
segments with no additional computations.

Let’s assume L, C, R, and M are the lengths for the left context
block, the center context, the right context, and the memory bank.
the number of heads in the multi-head self-attention is h and per head
dimension is d. Note the summary vector is the mean of the center
segment, of which length is always 1. In practice, the memory bank
is implemented in ring buffer way with small length, and the model
dimension, dh, is much larger than any of L, C, R, and M. Emformer
saves approximately L

L+C+R
of AM-TRF computation. For low la-

tency scenario with center context length 80 ms, right context length
40 ms, and left context length 1280 ms, Emformer reduces more than
91% computation from AM-TRF.

2.2.2. Carryover memory vector from previous segments in the
lower layer
The attention output from the summary vector sni is a memory vec-
tor in the memory bank. The memory bank carries all the previous

context information for future segments. As we can see from Fig-
ure (1a), the memory vector mn

i from the i-th segment in the n-th
layer is a prerequisite for the (i+1)-th segment from the same layer.
In training, the auto-regression characteristic of AM-TRF forces the
block processing to be in a sequential way that is not suitable for
GPU computing. Especially for low latency model training, where
the center segment is small, sequential block processing chunks the
whole utterance computation into a small computation loop, which
renders extremely low GPU usage.

To support parallelization for block processing training, Em-
former takes the memory bank input from previous segments in the
lower layer rather than the same layer. In this way, for each Em-
former layer, the whole sequence is trained in parallel, fully taking
advantage of the GPU computing resources.

2.2.3. Disallow attention between the summary vector with the
memory bank
According to Eq. (5), the memory vector is a weighted interpolation
of values projected from the memory bank, the left context block,
the center block, and the right context block. For both AM-TRF and
Emformer, assigning the attention weight between the summary vec-
tor and the memory bank to zero stabilizes the training and improves
recognition accuracy for long-form speech. Including the memory
bank information in the current memory vector cause the most left
context information over-weighted. Similar to a recurrent neural net-
work, enable the connection of summary vector with the memory
back could cause gradient vanishing or explosion. For AM-TRF, the
usage of the weak-attention suppression method [18, 23] partially
addresses the problem by setting weak-attention weights to zero.

2.2.4. Deal with look-ahead context leaking
The sequential block processing in AM-TRF training chunks the in-
put sequence physically. The right context size bounds the look-
ahead reception field. However, sequentially processing blocks sig-
nificantly slows the training. Now Emformer processes the input se-

Fig. 2: Illustration of avoiding look-ahead context leaking. The
chunk size is 4. The right context size is 1.

quence in a fully parallel manner in the training stage. Like [2, 24],
Emformer applies attention masks to limit the reception field in each
layer without physically chunking the input sequence. However, this
method has the risk of a look-ahead of context leaking. The essen-
tial right context size grows when multiple transformer layers stack
on top of one another. To deal with the look-ahead context leaking
issue in training, Emformer makes a hard copy of each segment’s
look-ahead context and puts the look-ahead context copy at the in-
put sequence’s beginning as illustrated in the right part of Figure 2.
For example, the output at the frame 2 in the first chunk only use the
information from the current chunk together with the right context
frame 4 without right context leaking.

3. EXPERIMENTS
3.1. Data and Setup
We verify the proposed method on the LibriSpeech corpus [21]. Lib-
riSpeech has 1000 hours of book reading utterances derived from the
LibriVox project. There are two subsets of development data and
evaluation data in LibriSpeech. The “clean” subsets contain sim-
ple and clean utterances. The “other” subset contains complex and
noisy utterances. Based on the WER on the dev data, we select the
best model and report its WER on test data. In the experiments, Em-
former is used as an encoder for both the hybrid [16, 18, 14] and
transducer [10, 11, 12] models.

3.1.1. Hybrid model
The context and positional dependent graphemes are used as output
units [25]. We use the standard Kaldi [26] LibriSpeech recipe to
build bootstrap the HMM-GMM system. The 80-dimensional log
Mel filter bank features at a 10 ms frame rate are used. We also
apply speed perturbation [27] and SpecAugment [28] without time
warping to stabilize the training.

A linear layer maps the 80-dimensional features to 128 dimen-
sion vectors. Four continuous 128-dimensional vectors are concate-
nated with stride 4 to form a 512 vector that is the input to Emformer.
In Emformer, each layer has eight heads of self-attention. The input
and output for each layer have 512 nodes. The inner-layer of FFN
has dimensionality 2048. Dropout is 0.1 for all layers across all ex-
periments. For medium latency, memory bank length is 4. For low
latency experiments where the segment size is small, memory bank
information largely overlaps with direct left context. Therefore, we
set the memory bank length to 0. An auxiliary incremental loss [29]
with weight 0.3 is used to overcome the training divergence issue
for deep transformer models. All hybrid models are trained with the
adam optimizer [30] using 180 epochs. The learning rate increases to
1e-3 in 20K warming-up updates. Then it is fixed until 100 epochs.
From then on, the learning rate shrinks every epoch with factor 0.95.
All the models are trained using 32 Nvidia V100 GPUs with fp16
precision. We use hosts with Intel Xeon D-2191A 18-core CPUs to
measure real time factors (RTFs). In measuring RTFs, 10 utterances
are concurrently decoded.

3.1.2. Transducer model
The output units are 1024 sentence pieces [31] with byte pair en-
coding (BPE) [32] as the segmentation algorithm. In the predictor,
the tokens are first represented by 256-dimensional embeddings be-
fore going through two LSTM layers with 512 hidden nodes, fol-
lowed by a linear projection to 640-dimensional features before the
joiner. For the joiner, the combined embeddings from the encoder
and the predictor first go through a Tanh activation and then another
linear projection to the target number of sentence pieces. Both the
LCBLSTM and Emformer encoders are pre-trained from the hybrid
systems. Similar to [12], we use a neural network language model
(NNLM) for shallow fusion during beam search where the weight
for NNLM probabilities was 0.3 across experiments. The training
data for NNLM is the combined transcripts of the train set and the
800M text-only set.

3.2. Results
3.2.1. Algorithmic latency induced by the encoder (EIL)
In block processing based decoding, the latency comes from the cen-
ter block size and the look-ahead context size. For the most left
frame in the center block, the latency is the center block size plus
look-ahead context size. The latency for the most right frame in the
center block is look-ahead context size. Therefore, we use algorith-
mic latency induced by the encoder (EIL), an average latency of all

the frames in the center block, which equals to the look-ahead con-
text latency plus center block latency discounted by 0.5.

3.2.2. From AM-TRF to Emformer
Table 1 gives a performance comparison of AM-TRF with Emformer
with a latency of 960 ms. Caching the key and value computation
speeds up the training from 1.14 hours per epoch to 0.5 hours per
epoch and decoding from RTF (real-time factor) 0.19 to 0.17. The
left context caching also reduces the redundant gradient in training
that results in some WER reduction1. Finally, using all improve-
ments, comparing with AM-TRF, Emformer speeds up the training
by 4.6 folds. Emformer also gets relative WER reduction 17% on
test-clean, 9% on test-other and 18% relative RTF reduction in de-
coding. For a low latency scenario, Emformer saves up to 91% of
computations from AM-TRF without considering parallel block pro-
cessing. It is impractical to train AM-TRF for a low latency scenario.
Therefore we ignore the detailed comparison.

Model RTF test train hours
clean other per epoch

AM-TRF-24L 0.16 3.27 6.66 1.14h
+ left context caching 0.13 2.88 6.44 0.50h

EM-24L 0.13 2.72 6.01 0.25h

Table 1: From AM-TRF to Emformer based on hybrid systems. All
models have 80M parameters. Left context size, center block size
and right context size are 640 ms, 1280 ms and 320 ms, respectively.

3.2.3. Results from hybrid systems

Model LC size Center Size test RTFclean other

LCBLSTM – 1280 2.90 6.76 0.25
– 640 2.96 6.97 0.27

EM-24L

320
1280

2.75 6.08 0.13
640 2.72 6.01 0.13

1280 2.59 5.90 0.13
320

640
2.80 6.47 0.13

640 2.78 6.46 0.13
1280 2.76 6.59 0.15

EM-36L 1280 1280 2.58 5.75 0.17
+smbr 2.50 5.62 0.17

EM-36L 1280 640 2.69 6.14 0.20
+smbr 2.62 5.97 0.19

Table 2: Impact of left context (LC) size (in millisecond) on WER
and RTF under medium latency constraints for hybrid models. Look-
ahead size is 320 ms, the EIL is 640 ms or 960 ms when center size
is 640 ms and 1280 ms, respectively. Both LCBLSTM and EM-24L
have the similar 80M parameters. EM-36L has 120M parameters.

Table 2 and Table 3 presents the performance of the Emformer
based hybrid systems for medium latency and low latency, respec-
tively. For both tables, larger left context size gives better WER
and slightly worse decoding RTF. In Table 2, LCBLSTM consists
of 5 layers with 800 nodes in each layer each direction. Using a
similar model size and latency constraint, Emformer gets a relative
48% RTF deduction. Under EIL 1280 ms, Emformer obtained over
relative 12% WER reduction over LCBLSTM on both test-clean
and test-other datasets. Together with sMBR training [33], the Em-
former with 120M parameters achieves WER 2.50% on test-clean

1For large datasets, the caching strategy does not give WER reduction.

and 5.62% on test-other under EIL 960 ms, and 2.62% on test-clean
and 5.97% on test-other under EIL 640 ms.

In Table 3, the LSTM consists of 7 layers with 1200 nodes in
each layer. The input to LSTM is a concatenation of the current
frame with eight look-ahead context frames. Low latency speech
recognition gives higher RTF than medium latency speech recog-
nition. Because medium latency speech recognition chunks an ut-
terance into fewer larger segments, it speeds up the neural network’s
computation. Using a similar model size and latency constraint, Em-
former gets relative WER reduction 9% and 15% on test-clean and
test-other, respectively. Together with sMBR training [33], the 36
layer Emformer achieves WER 3.01% on test-clean and 7.09% on
test-other. According to our knowledge, for low latency 80 ms, Em-
former gives the best WER on LibriSpeech data.

Model LC size latency test RTFin milliseconds clean other
LSTM – 80 3.75 9.18 0.25

EM-24L
320

80
3.44 8.37 0.30

640 3.37 8.05 0.31
1280 3.41 7.75 0.33

EM-36L 1280 80 3.32 7.56 0.49
+smbr 3.01 7.09 0.49

Table 3: Impact of left context (LC) size (in millisecond) on word
error rate and RTF under a low latency constraint for hybrid models.
The look-ahead and center context size are 40 ms and 80 ms, respec-
tively. Latency is defined by encoder induced latency (EIL). Both
LSTM and EM-24L have the similar 80M parameters. EM-36L has
120M parameters.

3.2.4. Results from transducer systems
Table 4 summarizes the comparison between LCBLSTM and Em-
former as encoders in the transducer system. Similar to the previous
observations with hybrid systems, we see that given the same EIL
(640 ms), Emformer consistently outperforms LCBLSTM on WER.
With the external NNLM, the transducer systems achieved similar
WER to those from hybrid systems.

Model NNLM test
clean other

LCBLSTM 7 3.04 8.25
3 2.65 7.26

EM-24L 7 2.78 6.92
3 2.37 6.07

Table 4: WER of Emformer with the neural transducers. Both mod-
els use an EIL 640 ms with center context 640 ms and look-ahead
context 320 ms. Left context size is 1280 ms.

4. CONCLUSIONS

The proposed Emformer applied a cache strategy to remove the du-
plicated computation in augmented memory transformer (AM-TRF)
for the left context. Emformer disabled the summary vector atten-
tion with a memory bank to stabilize the training. By redefining the
memory carryover procedure and avoiding the right context leaking,
Emformer supported parallelized block processing in training. Com-
paring with AM-TRF, Emformer got 4.6 folds of training speedup
and 18% decoding RTF reduction. Experiments on LibriSpeech
showed that Emformer outperformed the baselines in both hybrid
and transducer systems. Under average latency EIL 960 ms, Em-
former achieved WER 2.50% on test-clean and 5.62% on test-other
with decoding RTF 0.13. Under low latency 80 ms constraint, Em-
former achieved WER 3.01% on test-clean and 7.09% on test-other.

5. REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all
you need,” in NIPS, 2017.

[2] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Quoc V. Le, and
R. Salakhutdinov, “Transformer-XL: Attentive language mod-
els beyond a fixed-length context,” ACL, pp. 2978–2988, 2019.

[3] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” NAACL, vol. 1, pp. 4171–4186, 2019.

[4] C. Raffel, N. Shazeer, A. Roberts, and Others, “Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Trans-
former,” arXiv preprint arXiv:1910.10683, 2019.

[5] L. Dong, S. Xu, and B. Xu, “Speech-transformer: a no-
recurrence sequence-to-sequence model for speech recogni-
tion,” in ICASSP, 2018.

[6] S. Karita, N. Chen, T. Hayashi, and Others, “A Comparative
Study on Transformer vs RNN in Speech Applications,” arXiv
preprint arXiv:1909.06317, 2019.

[7] M. Sperber, J. Niehues, G. Neubig, and Others,
“Self-attentional acoustic models,” arXiv preprint
arXiv:1803.09519, 2018.

[8] S. Zhou, L. Dong, S. Xu, and B. Xu, “Syllable-based sequence-
to-sequence speech recognition with the transformer in man-
darin Chinese,” arXiv preprint arXiv:1804.10752, 2018.

[9] C. Wang, Y. Wu, S. Liu, J. Li, et al., “Low Latency End-to-End
Streaming Speech Recognition with a Scout Network,” arXiv
preprint arXiv:12003.10369, 2020.

[10] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo,
and S. Kumar, “Transformer Transducer: A Streamable Speech
Recognition Model with Transformer Encoders and RNN-T
Loss,” ICASSP, vol. 2020-May, pp. 7829–7833, 2020.

[11] C.-F. Yeh, J. Mahadeokar, and Others, “Transformer-
Transducer: End-to-End Speech Recognition with Self-
Attention,” arXiv preprint arXiv:11910.12977, 2019.

[12] A. Gulati, J. Qin, C.-C. Chiu, et al., “Conformer: Convolution-
augmented Transformer for Speech Recognition,” arXiv
preprint arXiv:12005.08100, 2020.

[13] J. Salazar, K. Kirchhoff, and Z. Huang, “Self-Attention Net-
works for Connectionist Temporal Classification in Speech
Recognition,” in Proceedings of ICASSP, 2019.

[14] F. Zhang, Y. Wang, X. Zhang, C. Liu, et al., “Fast, Simpler
and More Accurate Hybrid ASR Systems Using Wordpieces,”
InterSpeech, 2020.

[15] D. Povey, H. Hadian, P. Ghahremani, and Others, “A time-
restricted self-attention layer for asr,” in Proc. ICASSP, 2018,
pp. 5874–5878.

[16] Y. Wang, A. Mohamed, D. Le, and Others, “Transformer-
Based Acoustic Modeling for Hybrid Speech Recognition,”
ICASSP, 2019.

[17] N. Moritz, T. Hori, and J. L. Roux, “Streaming automatic
speech recognition with the transformer model,” arXiv preprint
arXiv:2001.02674, 2020.

[18] C. Wu, Y. Shi, Y. Wang, and C.-F. Yeh, “Streaming
Transformer-based Acoustic Modeling Using Self-attention
with Augmented Memory,” in InterSpeech, 2020.

[19] L. Dong, F. Wang, and B. Xu, “Self-attention aligner: A
latency-control end-to-end model for asr using self-attention
network and chunk-hopping,” ICASSP, pp. 5656–5660, 2019.

[20] L. Lu, C. Liu, J. Li, and Y. Gong, “Exploring Transformers for
Large-Scale Speech Recognition,” in InterSpeech, 2020.

[21] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR corpus based on public domain audio
books,” in ICASSP, 2015.

[22] Y. Wang, Y. Shi, F. Zhang, C. Wu, and Others, “Transformer
in action: a comparative study of transformer-based acous-
tic model for large scale speech recognition applications,”
https://arxiv.org/abs/2010.14665, 2020.

[23] Y. Shi, Y. Wang, C. Wu, C. Fuegen, et al., “Weak-Attention
Suppression For Transformer Based Speech Recognition,” in
InterSpeech, 2020.

[24] Xie Chen, Yu Wu, Zhenghao Wang, Shujie Liu, and
Jinyu Li, “Developing Real-time Streaming Transformer
Transducer for Speech Recognition on Large-scale Dataset,”
http://arxiv.org/abs/2010.11395, 2020.

[25] D. Le, X. Zhang, W. Zheng, and Others, “From Senones
to Chenones: Tied Context-Dependent Graphemes for Hybrid
Speech Recognition,” arXiv preprint arXiv:1910.01493, 2019.

[26] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi speech
recognition toolkit,” ASRU, pp. 1–4, 2011.

[27] T. Ko, V. Peddinti, D. Povey, and Others, “Audio augmentation
for speech recognition,” in InterSpeech, 2015.

[28] D S Park, W Chan, Y Zhang, and Others, “Specaugment: A
simple data augmentation method for automatic speech recog-
nition,” arXiv preprint arXiv:1904.08779, 2019.

[29] A. Tjandra, C. Liu, F. Zhang, and Others, “Deja-vu: Dou-
ble Feature Presentation and Iterated loss in Deep Transformer
Networks,” ICASSP, 2020.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[31] T. Kudo and J. Richardson, “SentencePiece: A simple and
language independent subword tokenizer and detokenizer for
neural text processing,” EMNLP, pp. 66–71, 2018.

[32] R. Sennrich, B. Haddow, and A. Birch, “Neural machine trans-
lation of rare words with subword units,” ACL, 2016.

[33] K. Vesely, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks.,” in Inter-
Speech, 2013, vol. 2013, pp. 2345–2349.

	1 Introduction
	2 Emformer
	2.1 AM-TRF
	2.2 Emformer
	2.2.1 Cache key and value from previous segments
	2.2.2 Carryover memory vector from previous segments in the lower layer
	2.2.3 Disallow attention between the summary vector with the memory bank
	2.2.4 Deal with look-ahead context leaking

	3 Experiments
	3.1 Data and Setup
	3.1.1 Hybrid model
	3.1.2 Transducer model

	3.2 Results
	3.2.1 Algorithmic latency induced by the encoder (EIL)
	3.2.2 From AM-TRF to Emformer
	3.2.3 Results from hybrid systems
	3.2.4 Results from transducer systems

	4 Conclusions
	5 References

