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ABSTRACT

Spoken language understanding (SLU) systems extract transcriptions,
as well as semantics of intent or named entities from speech, and
are essential components of voice activated systems. SLU models,
which either directly extract semantics from audio or are composed of
pipelined automatic speech recognition (ASR) and natural language
understanding (NLU) models, are typically trained via differentiable
cross-entropy losses, even when the relevant performance metrics of
interest are word or semantic error rates. In this work, we propose
non-differentiable sequence losses based on SLU metrics as a proxy
for semantic error and use the REINFORCE trick to train ASR and
SLU models with this loss. We show that custom sequence loss
training is the state-of-the-art on open SLU datasets and leads to 6%
relative improvement in both ASR and NLU performance metrics on
large proprietary datasets. We also demonstrate how the semantic
sequence loss training paradigm can be used to update ASR and SLU
models without transcripts, using semantic feedback alone.

Index Terms— speech recognition, spoken language understand-
ing, REINFORCE, multitask training, neural interfaces

1. INTRODUCTION
Spoken language understanding systems that aim to understand user
commands are an integral part of voice interfaces or spoken dialogue
systems. Our focus is on developing compact models that can be
deployed on edge devices allowing low-latency processing without
transmitting audio and/or transcripts to cloud servers and enabling
offline use in remote, medical, vehicular, or emergency environments.
Table 1 shows an example of the transcript and semantics of an
utterance. A conventional deployment for SLU comprises two distinct
pipelined stages: (1) ASR to transcribe utterances (2) an NLU system
that consumes the transcription and produces utterance intent and
named entities or slots.
1.1. Prior Work
A pipelined or compositional deployment would make use of end-
to-end (E2E) ASR architectures such as RNN-T [1], CTC [2],
Transformer-transducers [3], LAS [4], or conventional RNN-HMM
hybrid ASR systems [5]. Extracting intent and slots from transcripts
is a long running problem in NLU [6, 7, 8] that uses LSTMs or
Transformers [9, 10]. The interface between ASR and NLU sys-
tems has traditionally been the single best hypothesis generated by
ASR, although richer interfaces such as lattices and word confusion
networks have also been proposed [11, 12, 13, 14].
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Table 1: An example of intent, slots for an utterance.
Transcript set an alarm for six a.m
Intent SetNotificationIntent
Slots NotificationType - alarm, Time - six a.m.

With the compositional approach listed above, ASR errors cas-
cade down to the NLU system, ASR is not trained aware of down-
stream NLU use, and NLU is not trained to compensate for ASR
ambiguity or error. [15] first introduced multi-stage, multi-task and
joint models for E2E SLU. Most prior work in this space [16, 17,
18, 19, 20] directly computes a serialization of the semantics without
intermediate text output. Another common approach uses transfer
learning of pretrained ASR models to SLU tasks by replacing the
final layer. In contrast, [21] used pretrained ASR models and NLU
architectures and replaced the one-best ASR hypothesis interface
with a neural network interface allowing joint training of ASR and
NLU.

ASR systems are typically first trained with differentiable losses
such as cross-entropy (CE), CTC or RNN-T. NLU systems are trained
using CE losses for classification problems like intent, domain, or
named entity tags. E2E SLU systems make use of cross-entropy on
either transcripts, intents, slots, or some serialization of semantics.
The CE metric is simply a proxy for and does not directly minimize
SLU metrics of interest. REINFORCE [22] can be used to train
with arbitrary non-differentiable loss functions. This was extended
to mWER training for ASR [23], LAS [24], and RNN-T [25]. RE-
INFORCE corresponds to the policy gradient approach among other
reinforcement learning methods for seq2seq networks [26].
1.2. Contributions
We consider the class of SLU models composed of multistage ASR
and NLU subsystems, connected via text, subword tokens, or neu-
ral interfaces that can be jointly trained. In these systems, ASR is
trained with backpropagation of semantic feedback from NLU, and
NLU is trained to be aware of ASR ambiguity and errors preventing
a downward cascade of ASR errors as seen in compositional sys-
tems. We consider ASR systems based on LAS[4] and LSTM- or
Transformer-encoder-based NLU systems.

We first develop custom sequence loss training approaches to
make use of non-differentiable arbitrary risk values or losses on the
entire sequence of outputs. Similar to minimum-word-error-rate
(mWER) training, we develop minimum-semantic-error-rate (mSe-
mER) training that directly minimizes intent and slot errors. We intro-
duce alternatives which additionally factor in interpretation (concept)
and word errors. Using datasets with complete ASR transcriptions
and NLU annotations, we first show significant gains in both ASR
and NLU metrics using sequence loss training across datasets ranging
from 15 to 15,000 hours for limited to general use cases. We beat all
known external benchmarks in the open Fluent speech dataset [20].
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Fig. 1: E2E SLU architectures including ASR subsystem, neural NLU subsystem and 3 interfaces - token, text and neural

Fig. 2: Training SLU models with non-differentiable sequence losses. Dotted box encompasses ASR model including decoder

As a further application of sequence loss training, we show how a
dataset with audio and semantic annotations without human transcrip-
tions can still be used to drive ASR and SLU model improvements.

2. TECHNICAL APPROACH
2.1. ASR-Interface-NLU Models
We consider SLU models that comprise an ASR subsystem and an
NLU subsystem connected by an interface that passes the 1-best or
sampled ASR hypotheses, or via a neural network hidden layer.
The ASR subsystem is an attention-based Listen Attend and Spell
(LAS) model as shown in the green box of Fig. 1. The LAS used
here primarily comprises two components - a stacked RNN encoder
that encodes audio frames x to generate representations, and an
auto-regressive RNN decoder that sequentially generates logits or
subword probability distribution pw,i(wi) = P(wi|{w}i−1

1 ,x) at
each decoding step by using multiple attention heads to attend to the
audio encoding.

In this work, we focus on the LAS ASR subsystem, but the results
can be extended to other architectures, such as streaming-compatible
RNN-T systems or Transformer-based ASR architectures.
The Neural NLU subsystem as shown in the yellow box of Fig. 1
accepts a sequence of embeddings or features of tokens decoded by
ASR and passes it through multiple BLSTM layers. The outputs of
the final layer are used to generate probability distribution ps,i(si) =
P(si|w,x) of the slots s of each subword-token. The slot of a word
is the slot of the last token of the word. The outputs or features of
the final layer are also max-pooled and passed through feed-forward
networks to perform the sequence classification task of obtaining
logits over the utterance intent pintent(intent) = P(intent|w,x).

We also present results using a Transformer-encoder NLU archi-
tecture. The Transformer-encoder replaces the BLSTM and applies
multiple layers of self-attention to embeddings/features of the tran-
script tokens to produce latent representations that are used to obtain
slot and intent logits.
ASR-NLU Interfaces. We design the SLU system which comprises
multistage ASR and NLU systems with a choice of interfaces:

• Text from the ASR hypothesis is the interface between ASR and
NLU, and embeddings of these tokenized text are the inputs to the
NLU system. This allows use of pre-trained ASR and NLU models,
using transcribed audio datasets for the former and text-only NLU
datasets for the latter. We also term this the compositional baseline
model that chains pretrained ASR and NLU.

• Subword tokens sampled from the posteriors produced by the
ASR decoder form the interface with NLU. ASR and NLU can
be jointly trained with NLU trained aware of ASR errors. The
Gumbel-softmax sampling approach [27] allows backpropagation
of semantic feedback to ASR through the categorical subword
token interface.

• Neural network interface computes the feature for the token at
decoder step i using the token embedding concatenated with the
hidden output layer from the LAS decoder LSTM. This interface
allows NLU to be trained aware of ASR error, local ASR decoding
ambiguity as well as the audio context and allows for ASR to be
trained with semantic backpropagation. A pretrained ASR model
can be used using transcribed audio. These models are also termed
joint models in this work.

2.2. Loss Functions and Performance Metrics
Traditionally, differentiable cross-entropy loss functions are used in
ASR or SLU model training. The ASR system is teacher-forced
with the ground truth transcript subword sequence w and the cross-
entropy loss CEasr = −

∑
i log pw,i(wi) is calculated using the one-

step ahead decoded subword probability sequence. NLU consumes
the features from ASR and is trained with an intent loss CEintent =
− log pintent(intent) and a slot-loss CEslot = −

∑
i log ps,i(si) using

ground-truth intent and slot sequence s.
During joint ASR-NLU model multi-task training, a linear com-

bination of these loss functions is used:
CEtotal = CEasr + CEintent + CEslot (1)

While the versatile cross-entropy metric allows for end-to-end
model training, it serves merely as a differentiable proxy and does
not directly optimize for the final SLU metrics of interest, such as:



Speech recognition: Word error rate (WER) computed as the ratio of
word edit distance (the length of the shortest sequence of insert, delete,
and substitute operations over words to transform the hypothesis to
the reference) to sequence length. A slot-WER metric that upweights
critical words and not carrier phrases may also be used.
Intent classification: Intent classification error rate (ICER) is the
primary metric for evaluating intent. This is a recall-based metric.
Slot filling: Semantic error rate (SemER) metric is used to evaluate
jointly the intent and slot-filling performance or NLU performance.
Comparing a reference of words and their accompanying tags, per-
formance is classified as: (1) Correct slots - slot name and slot value
correctly identified, (2) Deletion errors - slot name present in refer-
ence but not hypothesis, (3) Insertion errors - extraneous slot names
included by hypothesis, (4) Substitution errors - correct slot name in
hypothesis but with incorrect slot value. Intent classification errors
are substitution errors.

SemER =
#Deletion + #Insertion + #Substitution
#Correct + #Deletion + #Substitution︸ ︷︷ ︸

#Slots in Reference

(2)

The interpretation error rate (IRER) metric, also known as concept
error rate, or simply SLU accuracy is related and is the fraction of
utterances for which a semantic error has been made.

For internal datasets, we report % relative improvements in these
metrics. For example, IRERR is IRER-relative reduction.
2.3. Sequence Loss Training
We make use of the REINFORCE framework [22, 24] to directly
optimize for a non-differentiable semantic metric M(C) of interest
on random candidate C = {w, s, intent} ∈ C that the SLU model
with weight θ produces with probability Pr(C = c|x) = p(c; θ) =
pintent(intent)

∏
i pw,i(wi)ps,i(si). To train the SLU model, we mini-

mize the expected value of metric M for each utterance coupled with
the cross-entropy loss CE weighted by parameter λ:

θ∗ = argminθE[M(C)] + λCE (3)
Sub-gradient descent solvers require access to∇θE[M(C)]. In the
sampling approximation to the term, we use an empirical average of
an equivalent quantity,
∇θE[M(C)] = E[(M(C)− M̄)∇θ log p(C; θ)]

≈ 1

n

∑
ci

iid∼p(c;θ)

(M(ci)− M̄)∇θ log p(ci; θ), (4)

where constant M̄ is used to reduce the variance of the estimate.
In the n-best approximation,

∇θE[M(C)] ≈
∑
c∈C̄

M(c)∇θp̄(c; θ), (5)

p̄(c; θ) =
p(c; θ)∑
c∈C̄ p(c; θ)

∀c ∈ C̄ (6)

where C̄ is a subset of candidates, here the n-best candidates produced
by performing beam-decoding on the ASR subsystem followed by
applying the NLU model to obtain intent, slots for each candidate,
is used to obtain a finite-sample approximation of the expectation.
Probabilities p̄(c; θ) are obtained by zeroing out probabilities of can-
didates not in C̄ and normalizing.

In either approximation, backpropagation using the non-
differentiable metric M is enabled as solvers have access to
∇θp(c; θ), as p(c; θ) is a differentiable function of weights θ.
We make use of the n-best approximation in the results section.

Thus we run both teacher-forcing to obtain CEtotal as well as
beam-decoding to obtain candidates C̄ as demonstrated in Fig. 2. As
noted in prior work [24], the cross-entropy lends stability to sequence
loss training. In Table 2, we describe the choice of semantic metrics,
candidate probability calculations, and regularizing cross-entropy

Table 2: By varying metric M of interest, candidate probability
p(c; θ), and regularizing CE, different sequence loss training meth-
ods can be realized for SLU or ASR models.

Training Metric M hyp-prob p(c; θ) CE
mWER WER

p̄(w; θ) (ASR) CEasrmSLU-ASR WER + SemER
mSemER SemER

p̄(c; θ) (ASR,
NLU) Eq. (6)

CEtotal

as Eq.
(1)

mNLU SemER + IRER +
CEintent

mSLU WER + SemER +
IRER + CEintent

Transcript-
free

SemER + IRER +
CEintent

p̄(c; θ), Eq. (6) C̃E total,
Eq. (7)

functions for the custom sequence loss training (mSemER, mSLU,
mNLU) we propose for joint ASR-NLU model training. We also
recover standard mWER training with WER metric, ASR candidate
probability and cross-entropy. mSLU-ASR is an example of using
semantic sequence losses from an external NLU model for ASR
model training.
2.4. Application: Transcript-Free Training of ASR models
For ASR model training, ground-truth transcripts are normally re-
quired, primarily for the computation of CEasr. We now show how
a dataset with audio and only semantic or NLU annotations (intents,
slots) and no transcript can be used to update ASR models. This weak
label learning problem is motivated by deployments where human
transcriptions are not available, but where an inferred semantic feed-
back from downstream dialogue management systems, applications
or user interactions can be used to drive ASR model improvements.
We focus on the case where semantic labels are available. In the
absence of a reference transcript, the 1-best ASR hypothesis tokens,
slots as well as the reference intent c̃ = {w̃, s̃, intent} are treated as
the reference in order to prevent catastrophic forgetting of the ASR
task. The ASR subsystem is teacher-forced [28] with the sequence
w̃, and NLU obtains the intent, slots for the resulting sequence. The
cross-entropy can be computed as

C̃E total = CEintent −
∑
i

log pw,i(w̃i) + log ps,i(s̃i), (7)

without requiring access to a reference transcript. The NLU metrics
of ICER, SemER, IRER can be computed from the available labels.
The sequence loss training procedure minimizes NLU errors that also
results in better ASR performance.

Note that this is not the only approach to obtaining the cross-
entropy regularizer. Teacher ASR or NLU labels or mixing with
dataset with transcribed audio are some alternatives.

3. DATA AND EXPERIMENTAL SETUP
We use datasets that include parallel speech transcripts and NLU
annotations of intent and slots:
• Fluent speech dataset: Public dataset [20] of 23k utterances (15

hours) that has been processed to fit the intent, named-entity frame-
work with 10 intents and 2 slots1

• 18 intent: Dataset of approximately 5.6M utterances (3.3k hours)
with utterances from 18 intents in home automation, global, and
notifications and 40 slots

• More Intent: 22M utterances (16k hours) spanning across 64 intents
accounting for 90% of the data and 122 slots accounting for 99%
of the slots in the data

• ASR-only 23k-hour dataset for pretraining the ASR model

1Actions are treated as intents. In addition, (inc/dec)rease_(volume/heat)
and (de)activate_music are added to form 10 intents and 2 slots of object and
location.



Table 3: Performance results on open and proprietary SLU datasets
(a) ASR-interface-NLU or Joint modeling approach with mSLU se-
quence loss training beats all baselines on the test and dev splits of the
open Fluent speech dataset on IRER or accuracy

Model Test IRER% Dev IRER%
Transformer audio-intent [29] 2.5 -
Baseline [20] 1.2 -
AT-AT (SOTA) [30] 0.5 -
Oracle neural NLU 0.00 0.00
Compositional ASR→NLU 0.42 2.15
ASR-Gumbel-NLU 0.40 2.05
Joint SLU - no seq training 0.39 2.05
Joint mSLU 0.39 1.89

(b) Comparison of compositional models & joint models with various
sequence loss approaches on the 18-intent eval set of 700k utterances.
Performance figures are relative % improvement from row 2 shown as 0%

Model WERR% SemERR% IRERR% ICERR%
1 Oracle NNLU - 41.17 42.93 56.34
2 Compositional:

LAS→NLU
0 0 0 0

2a Comp. mWER
LAS→ NLU

6.23 1.07 0.96 2.82

3a LAS-Gumbel-NLU 2.04 1.50 0.12 3.87
4a Joint mSemER 6.87 5.66 3.12 7.68
4b Joint mNLU 5.45 5.92 3.26 8.91
4c Joint mSLU 7.67 5.91 3.08 11.58
T1 Transformer-NLU

Joint mSemER
7.46 6.29 4.16 11.62

(c) Comparison of compositional baselines and sequence loss ap-
proaches on the MoreIntent eval set of 500k utterances. Performance
figures are relative % improvement to row M1 shown as 0%

Model WERR% SemERR% ICERR%
M1 Compositional 0 0 0
M2 Comp mWER 9.40 1.59 0.71
M2a Comp mSLU-ASR 6.95 3.97 0.95
M3 Joint mSLU 6.53 6.73 1.98

(d) Relative % improvement from a baseline Joint ASR-NLU model with
transcript-free training on the 18 intent and Moreintent datasets

Dataset WERR% SemERR% ICERR%
18-intent 2.19 5.87 10.49
Moreintent 1.01 5.88 1.77

Training details: The audio feature is composed of 3 stacked 25 ms LFBE
frames with 10 ms shift. This LAS model has 77M parameters: 5x512
BLSTM encoder, 2x1024 LSTM decoder with 4 attention heads of depth
256, projection 728, 4500 subword vocabulary. The NLU model has 4 (text
interface)-11 (neural network interface) million parameters with a 2x512
BLSTM encoder, a dense layer for slots, and 2x512 relu feed-forward layers
for intent. We also experimented with a 3M parameter Transformer-encoder
(2 layers, 8 attention heads, 256 units) NLU model. The LAS model is first
pretrained on the 23k hour dataset and finetuned on the specific dataset. With
ASR now frozen, NLU is first trained in joint systems followed by joint
ASR-NLU fine-tuning using sequence losses. In the 18 intent dataset, NLU is
trained in the joint system for 6 epochs followed by sequence loss training for
2, taking 1 day on 8 Nvidia Tesla V100 GPUs.

4. RESULTS AND DISCUSSION
Sequence loss training beats baselines

On the open Fluent speech dataset in Table 3a, we see all ASR-
interface-NLU models beat external baselines that directly extract
semantics from audio without intermediate transcript showing utility
of ASR pretraining. Both the neural and Gumbel-softmax interface
joint models outperform compositional text baselines.The joint model
with mSLU sequence loss training is the best-performing model as
seen by results on both dev and test splits. This can be categorized
as a small dataset of lower semantic complexity as the oracle NLU
model perfectly recovers semantics from ground truth transcripts.

In the 18-intent dataset results of Table 3b, the NLU metrics
degrade substantially from row 1 (NLU consuming ground-truth
transcript) to row 2 (NLU consuming ASR hypothesis), showing
impact of ASR errors. In row 2a, the LAS model is further trained
with mWER sequence loss, leading to gains in WER as well as NLU
metrics. The joint model with mSLU sequence loss training results in
best ASR and NLU metrics. From rows 2a and 4b, we see worse WER
for the joint model, but better NLU metrics showing that joint training
improves ASR performance relevant to downstream NLU. In row
T1, mSemER training was used with jointly trained LAS ASR and
Transformer-encoder NLU system; this has 1M fewer parameters than
joint models with LSTM-based NLU, but shows better performance.
Sequence loss training optimizes a metric of interest

Table 3b shows the impact of the non-differentiable metric M to
optimize on ASR and NLU performance. mWER training optimizes
for WER but this may not reflect its optimal NLU metrics (row 2a
vs 4). In rows 4a-c, we use metrics rooted in different definitions of
semantic error. The mNLU metric optimizing SemER, IRER, ICER

leads to better ICER and IRER than mSemER metric training that
optimizes only mSemER. mSLU training (adds WER to mNLU)
shows the best ASR performance, reflecting the importance of se-
mantic feedback even for ASR training. Thus we can customize any
sequence loss to optimize model performance metric(s).
Results on a general dataset

The conclusions from 15 and 3k hours datasets carry over to the
large 16k hour Moreintent dataset seen in Table 3c. Row M2 primarily
shows improvements in WER from mWER training of ASR resulting
in fewer SLU errors. M2a is an example of semantic sequence loss
training of ASR. However, the joint model of M3 trained to optimize
SLU metrics shows the best NLU performance. We thus have a
recipe to improve ASR and NLU model performance: train an ASR
model with mWER sequence loss. The ASR subsystem in the joint
model is initialized with these weights and the entire system is trained
minimizing SLU sequence losses.
Both ASR and NLU improve with transcript-free training

In Table 3d, we update models from a common starting point
using weak-feedback training with only NLU labels. A 5% relative
improvement in SemER is seen for both the 18-intent and Moreintent
datasets, and modest ASR improvements suggesting that semantic
feedback alone can be used to improve both ASR and SLU.

5. CONCLUSION
Edge deployments of ASR and SLU systems for voice activated as-
sistants require the development of low-footprint performant models.
Prior approaches involving either pipelined ASR and NLU models
or end-to-end SLU models use the differentiable cross-entropy loss
to train, but these do not map to metrics of interest such as word
and semantic error rates. In this work, we propose non-differentiable
semantic sequence losses and use the REINFORCE framework to
train ASR and SLU models. Joint training with custom sequence
losses lets ASR be trained with semantic feedback from NLU, and
NLU be trained aware of ASR errors. We show that both ASR and
NLU performance metrics of SLU systems improve across a range of
open and proprietary datasets and beat state-of-the-art models. We
also improve and update ASR systems without access to transcripts
using weak-feedback via NLU labels alone.
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[12] Matthew Henderson, Milica Gašić, Blaise Thomson, Pirros Tsiakoulis,
Kai Yu, and Steve Young, “Discriminative spoken language understand-
ing using word confusion networks,” in 2012 IEEE Spoken Language
Technology Workshop (SLT). IEEE, 2012, pp. 176–181.

[13] Gokhan Tur, Jerry Wright, Allen Gorin, Giuseppe Riccardi, and Dilek
Hakkani-Tür, “Improving spoken language understanding using word
confusion networks,” in Seventh International Conference on Spoken
Language Processing, 2002.

[14] Chao-Wei Huang and Yun-Nung Chen, “Adapting pretrained transformer
to lattices for spoken language understanding,” in 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU). IEEE, 2019,
pp. 845–852.

[15] Parisa Haghani, Arun Narayanan, Michiel Bacchiani, Galen Chuang,
Neeraj Gaur, Pedro Moreno, Rohit Prabhavalkar, Zhongdi Qu, and
Austin Waters, “From audio to semantics: Approaches to end-to-end
spoken language understanding,” in 2018 IEEE Spoken Language
Technology Workshop (SLT). IEEE, 2018, pp. 720–726.

[16] Sahar Ghannay, Antoine Caubrière, Yannick Estève, Nathalie Camelin,
Edwin Simonnet, Antoine Laurent, and Emmanuel Morin, “End-to-end
named entity and semantic concept extraction from speech,” in 2018
IEEE Spoken Language Technology Workshop (SLT). IEEE, 2018, pp.
692–699.

[17] Dmitriy Serdyuk, Yongqiang Wang, Christian Fuegen, Anuj Kumar,
Baiyang Liu, and Yoshua Bengio, “Towards end-to-end spoken language
understanding,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 5754–5758.

[18] Yao Qian, Rutuja Ubale, Vikram Ramanaryanan, Patrick Lange, David
Suendermann-Oeft, Keelan Evanini, and Eugene Tsuprun, “Exploring
ASR-free end-to-end modeling to improve spoken language understand-
ing in a cloud-based dialog system,” in 2017 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU). IEEE, 2017, pp.
569–576.

[19] Natalia Tomashenko, Christian Raymond, Antoine Caubrière, Renato
De Mori, and Yannick Estève, “Dialogue history integration into end-
to-end signal-to-concept spoken language understanding systems,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 8509–8513.

[20] Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, Vikrant Singh Tomar,
and Yoshua Bengio, “Speech model pre-training for end-to-end spoken
language understanding,” arXiv preprint arXiv:1904.03670, 2019.

[21] Milind Rao, Anirudh Raju, Pranav Dheram, Bach Bui, and Ariya Ras-
trow, “Speech to Semantics: Improve ASR and NLU Jointly via All-
Neural Interfaces,” in Proc. Interspeech, 2020, pp. 876–880.

[22] Ronald J Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Machine learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[23] Biing-Hwang Juang, Wu Hou, and Chin-Hui Lee, “Minimum classifica-
tion error rate methods for speech recognition,” IEEE Transactions on
Speech and Audio processing, vol. 5, no. 3, pp. 257–265, 1997.

[24] Rohit Prabhavalkar, Tara N Sainath, Yonghui Wu, Patrick Nguyen,
Zhifeng Chen, Chung-Cheng Chiu, and Anjuli Kannan, “Minimum word
error rate training for attention-based sequence-to-sequence models,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 4839–4843.

[25] Jinxi Guo, Gautam Tiwari, Jasha Droppo, Maarten Van Segbroeck, Che-
Wei Huang, Andreas Stolcke, and Roland Maas, “Efficient Minimum
Word Error Rate Training of RNN-Transducer for End-to-End Speech
Recognition,” in Proc. Interspeech, 2020, pp. 2807–2811.

[26] Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and Chandan K Reddy,
“Deep reinforcement learning for sequence-to-sequence models,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 7, pp.
2469–2489, 2019.

[27] Eric Jang, Shixiang Gu, and Ben Poole, “Categorical reparameterization
with Gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[28] Ronald J Williams and David Zipser, “A learning algorithm for continu-
ally running fully recurrent neural networks,” Neural computation, vol.
1, no. 2, pp. 270–280, 1989.

[29] Martin Radfar, Athanasios Mouchtaris, and Siegfried Kunzmann, “End-
to-End Neural Transformer Based Spoken Language Understanding,” in
Proc. Interspeech, 2020, pp. 866–870.

[30] Subendhu Rongali, Beiye Liu, Liwei Cai, Konstantine Arkoudas, Cheng-
wei Su, and Wael Hamza, “Exploring transfer learning for end-to-end
spoken language understanding,” arXiv preprint arXiv:2012.08549,
2020.


	1  Introduction
	1.1  Prior Work
	1.2  Contributions

	2  Technical Approach
	2.1  ASR-Interface-NLU Models
	2.2  Loss Functions and Performance Metrics
	2.3  Sequence Loss Training
	2.4  Application: Transcript-Free Training of ASR models

	3  Data and Experimental Setup
	4  Results and Discussion
	5  Conclusion
	6  References

