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ABSTRACT

In this work, we present a hybrid CTC/Attention model based on
a ResNet-18 and Convolution-augmented transformer (Conformer),
that can be trained in an end-to-end manner. In particular, the audio
and visual encoders learn to extract features directly from raw pixels
and audio waveforms, respectively, which are then fed to conform-
ers and then fusion takes place via a Multi-Layer Perceptron (MLP).
The model learns to recognise characters using a combination of
CTC and an attention mechanism. We show that end-to-end train-
ing, instead of using pre-computed visual features which is common
in the literature, the use of a conformer, instead of a recurrent net-
work, and the use of a transformer-based language model, signifi-
cantly improve the performance of our model. We present results
on the largest publicly available datasets for sentence-level speech
recognition, Lip Reading Sentences 2 (LRS2) and Lip Reading Sen-
tences 3 (LRS3), respectively. The results show that our proposed
models raise the state-of-the-art performance by a large margin in
audio-only, visual-only, and audio-visual experiments.

Index Terms— audio-visual speech recognition, end-to-end
training, convolution-augmented transformer

1. INTRODUCTION

Audio-Visual Speech Recognition (AVSR) is the task of transcribing
text from audio and visual streams, which has recently attracted a
lot of research attention due to its robustness against noise. Since
the visual stream is not affected by the presence of noise, an audio-
visual model can lead to improved performance over an audio-only
model as the level of noise increases.

Traditional audio-visual speech recognition methods follow a
two-step approach, feature extraction and recognition [9} [26]]. Sev-
eral End-to-End (E2E) approaches have been recently presented by
combining feature extraction and recognition inside a deep neural
network, and this has led to a significant improvement in Visual
Speech Recognition (VSR) and Automatic Speech Recognition
(ASR), respectively. In VSR, Assael et al. [4] developed the first
end-to-end network based on 3D convolution with Gated Recurrent
Units (GRUs) for recognising visual speech on GRID [6]]. Shilling-
ford et al. [|27| proposed an improved version of the model called
Vision to Phoneme (V2P) which predicts phoneme distributions,
instead of characters, from video clips. Chung and Zisserman
[S] developed an attention-based sequence-to-sequence model for
VSR in-the-wild. Zhang ez al. [36] proposed a Temporal Focal
block to capture temporal dynamics locally in a convolution-based
sequence-to-sequence model. In ASR, [22| [35] have been recently
shown to achieve better recognition performance by replacing the
hand-crafted features such as log-Mel filter-bank features with deep
representations from networks.

Several audio-visual approaches have been recently presented
where pre-computed visual or audio features are used [1} |19, 25|

29, 34)]. Afouras et al. developed a transformer-based sequence-to-
sequence model by using pre-computed visual features and log-Mel
filter-bank features as inputs. [[19}29,|34]] focus on using video clips
and log-Mel filter-bank features as inputs to train an audio-visual
speech recognition model in an end-to-end manner. Few audiovisual
studies are truly E2E, in the sense that they are trained with raw
pixels and audio waveforms [17}24]. In particular, [24] was applied
only to word classification while [17] was tested on a constrained
environment.

In this work, we extend our previous audio-visual model pre-
sented in [25] to an end-to-end model, which extracts features
directly from raw pixels and audio waveform, and introduce a
few changes which significantly improve the performance. In par-
ticular, we integrate the feature extraction stage with the hybrid
CTCl/attention back-end and train the model jointly. This results
in a significant improvement in performance. We also replace the
recurrent networks with conformers, which further push the state-of-
the-art performance. Finally, we replace the RNN-based Language
Model (RNN-LM) with a transformer-based LM which enhances
the performance even more. We also perform a comparison between
audio-only models trained with log-Mel filter-bank features and
raw waveforms. Although in clean conditions they both perform
similarly, the raw audio model performs slightly better in noisy
conditions. We evaluate the proposed architecture on the largest in-
the-wild audio-visual speech datasets, LRS2 and LRS3. The state-
of-the-art performance is raised by a large margin for audio-only,
visual-only and audio-visual experiments on both datasets, even
outperforming methods trained on much larger external datasets.

2. DATASETS

For the purpose of this study, we use two large-scale publicy avail-
able audio-visual datasets, LRS2 [5]] and LRS3 [3]]. Both datasets
are very challenging as there are large variations in head pose and
illumination. LRS2 [5]] consists of 224.1 hours with 144 482 video
clips from BBC programs. In particular, there are 96 318 utterances
for pre-training (195 hours), 45 839 for training (28 hours), 1 082 for
validation (0.6 hours), and 1 243 for testing (0.5 hours).

LRS3 [3]] collected from TED and TEDx talks is twice as
large as the LRS2 dataset. LRS3 contains 151819 utterances
(438.9 hours). Specifically, there are 118 516 utterances in the pre-
training set (408 hours), 31 982 utterances in the training-validation
set (30 hours) and 1321 utterances in the test set (0.9 hours).

3. ARCHITECTURE

The proposed architecture for audio-visual speech recognition is
shown in Fig. [ The encoder of the audio-visual model is com-
prised of three components, the front-end, the back-end, and the
fusion modules, as explained below.
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Fig. 1. End-to-end audio-visual speech recognition architecture. The
inputs are pixels and raw audio waveforms.

Front-end The acoustic and visual front-ends architectures are
shown in Table[T} For the visual stream, we use a modified ResNet-
18 [[11, 28] in which the first convolutional layer is replaced by a 3D
convolutional layer with a kernel size 5 x 7 x 7. The visual fea-
tures at the end of the residual block are squeezed along the spatial
dimension by a global average pooling layer. For the audio stream,
we use a ResNet-18 based on 1D convolutional layers, where the
filter size at the first convolutional layer is set to 80 (Sms). To down-
sample the time-scale, the stride is set to 2 at every block. The only
exception is the first block, where we set the stride to 4. At the end
of the front-end module, acoustic features are down-sampled to 25
frames per second so the match the frame rate of the visual features.
Back-end We use the recently proposed conformer encoder [10]
as the back-end for temporal modeling. It is comprised of an em-
bedding module, followed by a set of conformer blocks. In the
embedding module, a linear layer projects the features from ResNet-
18 to a dj-dimensional space. The projected features are encoded
with relative position information [7]. In each conformer block, a
feed-forward module, a Multi-Head Self-Attention (MHSA) mod-
ule, a convolutional module, and a feed-forward module are stacked
in order. In particular, the feed-forward module is composed of
a d-dimensional linear layer, followed by Rectified Linear Units
(ReLU), a dropout layer, and a second linear layer with an output
size of d*. The MHSA module receives queries @, keys K, and val-
ues V as inputs, where Q@ € RT*% K € RT*% and V € RT*%v,
T denotes the sequence length and dj, and d,, are the dimensions for
queries/keys and values, respectively. Suppose @@ = K = V in the
encoder and WZQ, WX and W} are denoted as the weights of linear
transformation for Q, K and V, respectively, the matrix of outputs at
i-th head self-attention is computed through Scaled Dot-Product At-
tention [31]: f:(Q}, K7, V/) = softmax(Q;K/T)/dY?V{ , where
Q, = QWP K, = KWX,V/ = VWY. The convolutional
module contains a point-wise convolutional layer with an expansion
factor of 2, followed by Gated Linear Units (GLU) [8]], a temporal
depth-wise convolutional layer, a batch normalisation layer, a swish
activation layer, a point-wise convolutional layer, and a layer nor-
malisation layer. This combination has been shown to improve ASR
performance compared to the transformer architecture as it better
captures temporal information locally and globally [10].

stage Input audio waveform
(Ta x 1)

Input image sequence
(T, x W x H)

conv3d,5 x 72, 64, stride 1 x 22
maxpool, 1 x 32

-convld., 3, 64] —conv2d, 32, 64]
ress X 2 ; X 2
|convld, 3,64 | conv2d, 3%, 64

[conv1d, 3, 128] [convad, 32, 128]
ress X 2 X 2
|convld, 3,128 | conv2d, 3%,128|

[conv1d, 3, 256] [conv2d, 32, 256]
resy X 2 X 2
| convld, 3,256 |conv2d, 37, 256 |

_convld, 3, 512] _conv2d, 32, 512]
ress X 2 . X 2
|convld, 3,512] |conv2d, 3%, 512

convy convld, 80, 64, stride 4

poolg | average pooling, stride 20 global average pooling

Table 1. The architecture of acoustic and visual Front-end.
The dimensions of kernels are denoted by {temporal size X
spatial size?, channels}. The acoustic model and visual backbones
have 3.85 M and 11.18 M parameters, respectively. T, and T, denote
the number of input samples and frames, respectively.

Fusion Layers The acoustic and visual features from the back-
end modules are then concatenated and projected to dj-dimensional
space by an MLP. The MLP is composed of a linear layer with an
output size of 4 x dy, followed by a batch normalization layer, ReLU,
and a final linear layer with an output dimension dj.

Decoder We use the transformer decoder proposed in [31]], which
is composed of an embedding module, followed by a set of multi-
head self-attention blocks. In the embedding module, a sequence of
the prefixes from index 1 to ! — 1 is projected to embedding vectors,
where [ is the target length index. The absolute positional encoding
[31] is also added to the embedding. A self-attention block is com-
prised of two attention modules and a feed-forward module. Specif-
ically, the first self-attention module uses () = K = V as input and
future positions at its attention matrix are masked out. The second
attention module uses the features from the previous self-attention
module as @ and the representations from the encoder as K and V'
(K = V). The component in the feed-forward module is the same
as in the encoder.

Loss functions Let x = [z1,..,z7] and y = [y1,...,yr] be
the input sequence and target symbols, respectively, with 7" and
L representing the input and target lengths, respectively. Recent
works in audio-visual speech recognition rely mostly on CTC [[17] or
attention-based models [[1, 5] for audio-visual recognition. CTC loss
assumes conditional independence between each output prediction
and has a form of pere(y|x) & [[1—, p(y|x). An attention-based
model gets rid of this assumption by directly estimating the poste-
rior on the basis of the chain rule, which has a form of pc:(y|x) =
1%, p(wily<i, x). In this work, we adopt a hybrid CTC/Attention
architecture [32] to force monotonic alignments and at the same time
get rid of the conditional independence assumption. The objective
function is computed as follows:

L= alogpere(y]x) +(1—a)logpes (y|x) )

where « controls the relative weight in CTC and attention mech-
anisms.

4. EXPERIMENTS

Pre-processing In each video, 68 facial landmarks are detected
and tracked using dlib [14]]. To remove differences related to rotation
and scale, the faces are aligned to a neural reference frame using



a similarity transformation. A bounding box of 96 x 96 is used
to crop the mouth ROIs. The cropped patch is further converted
to gray-scale and normalised with respect to the overall mean and
variance on the training set. Each raw audio waveform is normalised
by removing its mean and dividing by its standard deviation.

Data augmentation Following [20) [28], random cropping with a
size of 88 x 88 and horizontal flipping with a probability of 0.5 are
performed for each image sequence. For each audio waveform, ad-
ditive noise, time masking, and band reject filtering are performed
in the time domain. Babble noise from the NOISEX corpus [30] is
added to the original audio clip with an SNR level from [-5 dB, 0 dB,
5dB, 10dB, 15dB, 20dB]. The selection of one of the noise levels
or the use of a clean waveform is done using a uniform distribution.
Similarly to [[13]], 2 sets of consecutive audio samples with a maxi-
mum length of 0.4 seconds are set to zero and 2 sets of consecutive
frequency bands with a maximum width of 150 Hz are rejected. In
audio-only experiments, we add speed perturbation by setting the
speed between 0.9 and 1.1.

Experimental settings The network is initialised randomly, with
the exception of the front-end modules in the encoder part, which
in some experiments are initialised based on the publicly available
pre-trained models on LRW [18]] [1_1 The back-end modules use a
set of hyper-parameters (e = 12, d¥ = 2048, d< = 256, d¥ =
256), where e denotes the number of conformer blocks. The num-
ber of heads n"°*? is set to 4 in visual-only models and 8 in audio-
only/audio-visual models, respectively. Kernel size is set to 31 in
each depth-wise convolutional layer. The transformer decoder uses
6 self-attention blocks, where the hyper-parameters settings in feed-
forward and self-attention modules are the same as in the encoder.
The Adam optimizer [[15] with 1 =0.9, 82 =0.98 and e=10"7 is
used for end-to-end training with a mini-batch size of 8. Following
[31]], the learning rate increases linearly with the first 25 000 steps,
yielding a peak learning rate of 0.0004 and thereafter decreases pro-
portionally to the inverse square root of the step number. The whole
network is trained for 50 epochs. Note that the utterances with more
than 600 frames in the pre-training set are excluded during training.
Language Model We train a transformer-based language model
[12] for 10 epochs. The language model is trained by combining
the training transcriptions of LibriSpeech (960 h) [21], pre-training
and training sets of LRS2 [5] and LRS3 [3], with a total of 16.2
million words. The weighted prior score from the language model is
incorporated through a shallow fusion, which is described in Eq.[2]

SI = a,rgInFLX {)\longT(‘, (y|X) + (1 - A)IngCE (y|x)
vey +Blogpum (y)} @)

where ) is a set of predictions of target symbols. A is a relative
CTC weight at the decoding phase, and S is the relative weight for
the language model. In our work, we set A to 0.1 and § to 0.6,
respectively.

5. RESULTS

Ablation Studies In this section, we investigate the impact of each
change on the baseline hybrid CTC/Attention model [25]. Results on
LRS?2 are shown in Table[2] We first train a model from scratch in an
end-to-end manner, resulting in an absolute improvement of 12.6 %
over the two stage approach, where visual features are first extracted
and then fed to the back-end. We initialise the visual front-end with
a model pre-trained on LRW and a further absolute improvement of

IPre-trained LRW models are available at https: //sites.google.
com/view/audiovisual-speech-recognition

Method WER
Baseline [24]] 63.5
+ E2E 50.9

+ LRW pre-training 46.2

+ Conformer encoder 42.4

+ Transformer LM 37.9

Table 2. Ablation study on visual speech recognition performance
on LRS2.
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Fig. 2. Word Error Rate (WER) as a function of the noise level. A:
End-to-End audio model. V: End-to-End visual model, AV: End-to-
End audio-visual model. log-Mel filter-bank: A conformer model
trained with log-Mel filter-bank features.

4.7 % is observed. Then, we replace the LSTM encoders and de-
coders with a conformer encoder and a transformer decoder, respec-
tively, which results in an absolute improvement of 3.8 %. We also
replace the RNN-based language model with a transformer-based
language model and achieve a WER of 37.9 %. This leads to an
absolute improvement of 4.5 %.

Results on LRS2 Results on LRS2 are reported in Table |3} The
proposed visual-only model reduces the WER from 48.3% to
39.1 %, while using 6 x fewer training data [1]]. In case, we use the
pre-trained LRW model for initialisation the WER drops further to
37.9 %. The E2E audio-only model using audio waveforms for train-
ing achieves a WER of 4.3 %, resulting in an absolute improvement
of 2.4 %. over the current state-of-the-art. For comparison purposes,
we also run an experiment using 80-dimension log-Mel filter-bank
features following [25] [32]. Similarly to the WavAugment [13]], we
augment the log-Mel filter-bank features via SpecAugment [23]].
By replacing the raw audio features with the log-Mel filter-bank
features, we observe the same performance, WER 4.3 %, which in-
dicates deep acoustic speech representations based on the proposed
temporal network can be directly learnt from audio waveforms. To
better investigate their differences, we conduct noisy experiments
varying different levels of babble noise. The results are shown in
Fig.[2] It is interesting to observe that the performance of the raw
audio model slightly outperforms the log-Mel filter-bank based over
varying levels of babble noise with a maximum absolute margin of
7.5 % at -5dB. This indicates deep speech representations are more
robust to noise than the log-Mel filter-bank features. In case, we
initialise the audio encoder with a model pretrained on LRW then
the WER drops to 3.9 %.

It is evident that the audio-visual model which directly learns
from audio waveforms and raw pixels leads to a small improvement
over the audio-only models. We also run audio-only, visual-only, and
audio-visual experiments varying the SNR levels of babble noise.
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Method Training Data (Hours) WER Method Training Data (Hours) WER
Visual-only () Visual-only ({)

MV-WAS LRS2(224) 70.4 Conv-seq2seq LRW (157)+ LRS2&3"? (698) ~ 60.1
LIBS MVLRS (730) + LRS2 (224) 65.3 KD +CTC VC2* (334) + LRS3Y"4 (438)  59.8
CTC/Attention LRW (157) + LRS2(224) 63.5 TM-seq2seq MVLRS (730) + LRS2&3" (632) 58.9
Conv-seq2seq LRW (157) +LRS2&3"? (698) ~ 51.7 EG-seq2seq LRW (157)+ LRS3" (474) 578
KD +CTC VC29*" (334) + LRS2&3"* (632) 51.3 VaP YT (3 886) 551
TDNN LRS2 (224) 489 RNN-T YT (31 000) 33.6
TM-seq2seq MVLRS (730) + LRS2&3"* (632) 48.3 Ours (V) LRS3"* (438) 46.9
Ours (V) LRS2 224) 31 Ours (V) LRW (157)+LRS3"4 (438) 433
Ours (V) LRW (157) + LRS2(224) 379 Ours (V) LRW (157) + LRS3"° (474) 204

Audio-only ({)
TM-seq2seq

MVLRS (730) + LRS2&3"%4 (632) 9.7

CTC/Attention LRS2 (224) 8.3
CTC/Attention LibriSpeech (960) + LRS2 (224) 8.2
TDNN LRS2 (224) 6.7
Ours (filter-bank) LRS2 (224) 4.3
Ours (raw A) LRS2 (224) 4.3
Ours (raw A) LRW (157) + LRS2 (224) 3.9

Audio-visual (])
TM-seq2seq

MVLRS (730) + LRS2&3"* (632) 8.5

Audio-only (|)

TM-seq2seq MVLRS (730) + LRS2&3"%4 (632) 8.3

EG-seq2seq LRS3'%0 (474) 7.2
RNN-T YT (31000) 4.8
Ours (filter-bank) LRS3'%4 (438) 2.3
Ours (raw A) LRS3'4 (438) 2.3
Ours (raw A) LRW (157) +LRS3"* (438) 2.3
Ours (raw A) LRW (157) +LRS3"0 (474) 13

Audio-visual ({)

CTC/Attention LRW (157)+LRS2 (224) 70 TM-seq2seq MVLRS (730) + LRS2&3"* (632) 72
TDNN LRS2 (224) 5.9 EG-seq2seq LRW (157) + LRS3"0 (474) 6.8
Ours (raw A + V) LRS2 (224) 4.2 RNN-T YT (31000) 4.5
Ours (raw A + V) LRW (157) + LRS2 (224) 3.7 Ours (raw A + V) LRW (157) + LRS3"%* (438) 2.3

Ours (raw A + V) LRW (157) + LRS3"? (474) 1.2

Table 3. Word Error Rate (WER) of the audio-only, visual-only and
audio-visual models on LRS2. VC29*™ denotes the filtered version
of VoxCeleb2. LRS2&3 consists of LRS2 and LRS3. LRS3""* is
the updated version of LRS3 with speaker-independent settings.

The results are shown in Fig[2} Note that both audio-only and audio-
visual models are augmented with noise injection. It is clear that the
audio-visual model achieves better performance than the audio-only
model. The gap between raw audio-only and audio-visual models
becomes larger by the presence of high level of noise. This demon-
strates that the audio-visual model is particularly beneficial when the
audio modality is heavily corrupted by background noise.

Results on LRS3 Results on LRS3'"* are reported in Table El
The best visual-only model has a WER of 43.3 %. We observe that
our visual-only model outperforms other methods by a large margin
while using fewer training data. For the audio-only and audio-visual
experiments, our model pushes the state-of-the-art performance to
2.3% and 2.3 %, respectively, outperforming by 2.5% and
2.2 %, respectively. It is worth pointing out that our model is trained
on a dataset which is 52 x smaller than , 595 vs 31000 hours.

We should note that some works use the old version of LRS3
(denoted as v0.0), where some speakers appear both in the training
and test sets. For fair comparisons, we also report the performance
of audio-only, visual-only, and audio-visual model on this version of
LRS3 as well. Specifically, the audio-only model achieves a WER

Table 4. Word Error Rate (WER) of the audio-only, visual-only and
audio-visual models on LRS3. VC2* denotes the filtered version
of VoxCeleb2. LRS2&3 consists of LRS2 and LRS3. LRS3"** is
the updated version of LRS3 with speaker-independent settings.

to 1.3 %. The visual-only model reduces the WER to 30.4 %. The
audio-visual model reduces the WER to 1.2 % which is the new
state-of-the-art performance for this set. These significant improve-
ments over LRS3"%# are mainly due to the fact that in LRS3V0-°
overlapped identities appear in both pre-training and test sets.

6. CONCLUSIONS

In this work, we present an encoder-decoder attention-based archi-
tecture for audio-visual speech recognition, which can be trained in
an end-to-end fashion and leads to state-of-the-art results on LRS2
and LRS3. Additionally, the audio-visual experiments show that the
audio-visual model significantly outperforms the audio-only model
especially at high levels of noise. It would also be interesting to in-
vestigate in future work an adaptive fusion mechanism that learns to
weigh each modality based on the noise levels.
Acknowledgements. We would like to thank Dr. Jie Shen for his
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