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ABSTRACT

Despite the great success in Natural Language Processing
(NLP) area, large pre-trained language models like BERT are
not well-suited for resource-constrained or real-time applica-
tions owing to the large number of parameters and slow in-
ference speed. Recently, compressing and accelerating BERT
have become important topics. By incorporating a parameter-
sharing strategy, ALBERT greatly reduces the number of
parameters while achieving competitive performance. Never-
theless, ALBERT still suffers from a long inference time. In
this work, we propose the ELBERT, which significantly im-
proves the average inference speed compared to ALBERT due
to the proposed confidence-window based early exit mech-
anism, without introducing additional parameters or extra
training overhead. Experimental results show that ELBERT
achieves an adaptive inference speedup varying from 2x to
10x with negligible accuracy degradation compared to AL-
BERT on various datasets. Besides, ELBERT achieves higher
accuracy than existing early exit methods used for accelerat-
ing BERT under the same computation cost. Furthermore, to
understand the principle of the early exit mechanism, we also
visualize the decision-making process of it in ELBERT. Our
code is publicly available online.'

Index Terms— Natural Language Processing, BERT, In-
ference Acceleration, Early Exit, Model Compression

1. INTRODUCTION

In recent years, large pre-trained language models (e.g.,
BERT [1], RoBERTa [2], XLNet [3]) have made remark-
able improvements in many Natural Language Processing
(NLP) tasks. However, the great success is achieved at the
cost of millions of parameters and huge computation cost.
Hence, employing those models in resource-constrained and
real-time scenarios is quite difficult.

To improve the applicability of BERT, some works using
common compression methods have been proposed, such as
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Weight Pruning [4], Quantization [5] and Knowledge Distill-
ing [6]. Compared with the models based on these methods,
ALBERT [7] greatly reduces the amount of parameters and
memory consumption by sharing parameters, and achieves
even better performance than BERT. However, ALBERT
doesn’t cut down computation cost and inference time.

Redundance [8] and overthinking [9] are knotty problems
that big models often suffer from. Early exit is a method that
focuses on the differences in input complexities for avoid-
ing redundant computations and overthinking to accelerate
inference. The inputs judged as simple are processed with
only a part of the whole model. Early exit enables one-for-
all [10], which means that one trained model can meet dif-
ferent accuracy-speed trade-offs by adjusting the criterion of
input complexity in inference only, while time-consuming re-
training is needed for other common compression methods.

In this paper, we propose ELBERT, a fast ALBERT cou-
pled with a confidence-window based early exit mechanism,
which achieves high-speed inference without introducing ad-
ditional parameters. Specifically, ELBERT uses ALBERT as
the backbone model (also compatible with other BERT-like
models). The confidence-window based early exit mechanism
enables an input-adaptive efficient inference. Thus it saves
inference time and computation cost. We conduct extensive
experiments on various datasets. The results show that EL-
BERT achieves at least 2x inference speedup while keeping
and even improving the accuracy, and up to 10x speedup with
negligible accuracy degradation.

The main contributions of this paper can be summarized
as follows: 1) A novel and efficient confidence-window based
early exit mechanism is proposed for the first time to the best
of our knowledge. 2) We propose ELBERT which achieves
better performance than existing early exit methods used for
accelerating BERT on many NLP tasks. 3) We visualize the
decision-making process of the early exit in ELBERT, which
sheds light on its internal mechanism.

2. RELATED WORK

Prior works in model compression can be mainly divided into
two categories:

A. Structure-wise compression methods try to remove the
unimportant elements of models. For Weight Pruning, Gor-
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Fig. 1. Structures of BERT, ALBERT and ELBERT. Note that
ELBERT brings no additional parameters, and the computa-
tion brought by early exit mechanism is ignorable [23] (less
than 2% of that of one encoder).

don et al. [11] applied the magnitude-based pruning method
to BERT. Michel et al. [12] pruned BERT based on gradients
of weights. For Quantization, Q-BERT [13] utilized a Hes-
sian based mix-precision approach to compress BERT, while
QS8BERT [14] quantized BERT using symmetric linear quan-
tization. Besides, Knowledge Distilling is applied by Tang et
al. [15], Sun et al. [16], DistillBERT [17] and TinyBERT [18]
for a light BERT.

B. Input-wise compression methods focus on avoiding re-
dundant computations based on the complexity of inputs.
BranchyNet [19] proposed the entropy based confidence
measurement. Shallow-Deep Nets [9] managed to mitigate
the overthinking problem with early exit mechanism. Layer-
Drop [20] randomly dropped layers at training time, allowing
for sub-network selection to any desired depth in inference.
Concurrently, DeeBERT [21] and TheRT [22] applied the
basic early exit method to BERT. FastBERT [23] proposed a
self-distilling method in fine-tuning. However, those works
only explored the intermediate state of the classifier, while
ELBERT proposes a two-stage early exit mechanism. Co-
incidentally, Zhou [24] first proposed one criterion which is
similar to one of the proposed criteria in this work.

3. METHODOLOGY

3.1. Model Arichitecture

As shown in Fig. 1, ELBERT uses ALBERT as the backbone
model, which is composed of an encoder and a classifier. Ad-
ditionally, ELBERT is designed to put a early exit decision

after each propagation processed by the encoder and the clas-
sifier.

3.2. Training

To fit the early exit mechanism in inference, the losses of in-
puts exiting at different depths of ELBERT are calculated dur-
ing the training. For classification, the early exit loss at the
i-th layer L£; is calculated with Cross-Entropy

Li==> [[Fi=d-logP(§i=c|h)], (1)
ceC

where ¢ and C' denote one class label and the set of class la-
bels, respectively. The common practice is to simply add up
L; as the total loss £ [21,23]. For better training under var-
ious combinations of losses, we assign a trainable variable ¢;
with an initial value of 4 to each layer, inspired by Wang et
al. [25]. The weight of the i-th layer w; is calculated by

o(t:) O<i<M-1
Wi = M-1 . )
M=% o) i=M
where M denotes the depth of ELBERT and o(-) denotes sig-

moid funciton o (¢;) = 1/ (1 + exp(—t;)). Then the total
loss L is calculated by a weighted sum

2

i=1
In this way, the cases that inputs may exit at different depths
are well considered, which helps to bridge the gap between
training and inference of ELBERT.

3.3. Inference

ELBERT first introduces a two-stage early exit mechanism,
which focuses on both the intermediate state and the historical
trend of classifier output to decide whether an early exit of
computation is needed.

Formally, the input x goes through the encoder iteratively.
The hidden state h; after the i-th forward propagation of the
encoder is calculated by

he — Encoder(h;_1)
7| Embedding(x)

0<i<M
i=0 ' @

After each forward propagation in the encoder, the hidden
state h; is sent to the classifier that outputs a prediction prob-
ability distribution p; = Classi fier(h;) via fully-connected
layer and softmax function for classification. Then we can get
the predicted label y, = argmaz(p;).

The first stage of the early exit focuses on confidence, or
intermediate state, of the classifier. Given a probability distri-
bution p;, we take its normalized entropy as the Puzzlement
of the current classifier, which is calculated by

ch:l pi(j)log pi(j)
log(1/C) ’
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Puzzlement(i) =



where C' denotes the number of labeled classes. The model
will stop the inference in advance and take ¥; as the final pre-
diction to skip further computations when Puzzlement (i) <
6, where ¢ is a user-defined threshold. When a faster model
is needed and some accuracy degradation is tolerable, we can
set a higher §, while the opposite situation leads to a lower 4.

The second stage traces the historical trend of the classi-
fier output in a time window, whose size N is defined based
on user demands. We propose three criteria for triggering the
second stage early exit in a time window: 1) The prediction
probability p; of a certain class varies monotonically. 2) The
range of max(p;) is less than a set value. 3) The predicted
label §; stays the same. Experimental results show that the
first criterion outperforms others. In subsequent experiments,
we will use the first criterion for the second stage by default,
and the window size [V is set to 8.

Usually, we prefer the moment when we get enough con-
fidence. Only when the first stage condition isn’t satisfied will
we consider the second stage early exit.

4. EXPERIMENTS

4.1. Baselines

We select three baselines. 1) Original model: We choose
ALBERT-large (depth=24). 2) Plain compression: We eval-
uate several models with smaller depths based on ALBERT-
large. 3) Early exit approach: The methods in DeeBERT and
FastBERT are applied to ALBERT for comparison.

4.2. Datasets

To test the generalization ability of ELBERT, widely used
GLUE benchmark [26], AG-news [27] and IMDB [28] are
evaluated in our experiments. These datasets include various
NLP tasks such as Natural Language Inference, Sentiment
Analysis and News Classification.

4.3. Experimental Setup

Training For GLUE we use the corresponding hyperparam-
eters in ALBERT original paper for a fair comparison, while
for other datasets, we use a default learning rate of 3e-5 and a
batch size of 32.

Inference In practical scenes, the user requests often arrive
one by one. Our batch size of inference is set to 1, following
prior work [19,21]. The experiments are done on an NVIDIA
2080Ti GPU.

4.4. Main Results

Efficient inference acceleration We evaluate ELBERT on
the above datasets and report the median of 5 runs in Fig. 2
and Fig. 3. The curves are drawn by interpolating several
points that correspond to different §, which changes from 0.1
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Fig. 2. The accuracy-speed tradeoffs of ELBERT on different
datasets, where computation cost represents the normalized
ratio of original computation. The rightmost point of each
curve represents the original model.

to 1.0 with a step size of 0.1 in the first stage of early exit.
For all datasets, ELBERT achieves at least two times infer-
ence speedup while keeping or even improving the accuracy.
When a little accuracy degradation is tolerable, the inference
acceleration ratio can be up to ten. This demonstrates EL-
BERT’s superiority of inference acceleration.

Task-related trends An interesting observation is that there
are different trends of curves in Fig. 2 on different kinds of
tasks. For News Classification (AG), ELBERT gets the best
acceleration performance, followed by Sentiment Analysis
(SST-2, IMDB), the curves of which drop a little faster. NLI
(QNLI RTE) is the case with the lowest performance. This
indicates that different tasks may have different internal char-
acteristics and acceleration difficulty. Early exit may help us
understand tasks better. We will do some discussions about
this in Section 4.5.

Flexible and better accuracy-speed tradeoffs We com-
pare different models on several datasets. The results are
shown in Fig. 3, where the red star-shaped points repre-
sent different models obtained by plain compression. Our
first observation is that ELBERT significantly outperforms
plain compression models. Also, compared to other early
exit based methods, ELBERT obtains higher accuracy than
both DeeBERT and FastBERT under the same computation
cost, which shows ELBERT’s great advantages over other
approaches.

4.5. Visualization of Early Exit

To visualize the decision-making process of the early exit in
ELBERT, we make some changes to BertViz [29], a tool for
visualizing attention in Transformer. We use the attention-
scores of each layer to get the cumulative attention-scores,
which allows us to see the attention relationships between
tokens clearly as the input passes through different depths of
ELBERT. Since ELBERT only takes the [cls] token as the
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Fig. 3. Comparison on RTE, MRPC and MNLI.

representation of one sentence to do classification, we only
show the cumulative attention-scores of [cls] to other tokens
in the figures. We take SST, a Sentiment Analysis dataset for
example, and find two main patterns of early exit.

Simple input, simple exit For the most common inputs
without emotional turns or negative words, as shown in Fig. 4,
the attention of [cls] to the emotional keywords (i.e., ham-
pered) tends to increase monotonously. Early exit is triggered
when such attention exceeds a certain limit determined by
the ¢, thus reducing redundant computations. Actually the
prediction remains unchanged after the exit layer 11.
Mitigating overthinking As Fig. 3 shows, ELBERT some-
times achieves even higher accuracy than that of the original
model, indicating that the early exit mechanism corrects some
wrong predictions of the final layer. As shown in Fig. 5, the
model first pays attention to the commendatory word (i.e.,
benign) and predicts Positive. Next, an irrelevant nega-
tive word (i.e., rarely) is noticed, seen as the negation of

1The results are based on our implementation on ALBERT-large.
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Fig. 4. A simple case. The early exit is triggered when the
attention to specific word (hampered) exceeds a certain limit.
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[SEP]
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Fig. 5. A hard case. The early exit is triggered in time after
the commendatory word (benign) is well noticed, avoiding
subsequently overthinking about unrelated negation (rarely).

commendatory words. Then the model predicts Negative.
This is exactly an example of overthinking. In correct cases,
the negation and the corresponding word are often noticed
simultaneously.

The above patterns demonstrate that ELBERT’s predic-
tion for classification is mainly determined by some key
words, such as negatives and those words with strong emo-
tional orientation. The early exit mechanism helps to establish
appropriate attention to these words, which enables the model
to exit from simple inputs in advance and avoid overthinking.

5. CONCLUSION

In this paper, we propose ELBERT, a fast ALBERT coupled
with a confidence-window based early exit mechanism. Our
empirical experiments demonstrate that ELBERT achieves
excellent inference acceleration and outperforms other early
exit methods used for accelerating BERT. Moreover, it’s quite
easy for other models to reach fast and flexible inference by
using the proposed method. Our future work will include ex-
ploring the confidence-window based early exit mechanism
on more kinds of models and combining our method with
common compression methods.
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