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ABSTRACT

The spread of COVID-19 has been among the most devas-
tating events affecting the health and well-being of humans
worldwide since World War II. A key scientific goal concern-
ing COVID-19 is to develop mathematical models that help
us to understand and predict its spreading behavior, as well as
to provide guidelines on what can be done to limit its spread.
In this paper, we discuss how our recent work on a multiple-
strain spreading model with mutations can help address some
key questions concerning the spread of COVID-19. We high-
light the recent reports on a mutation of SARS-CoV-2 that is
thought to be more transmissible than the original strain and
discuss the importance of incorporating mutation and evolu-
tionary adaptations (together with the network structure) in
epidemic models. We also demonstrate how the multiple-
strain transmission model can be used to assess the effec-
tiveness of mask-wearing in limiting the spread of COVID-
19. Finally, we present simulation results to demonstrate our
ideas and the utility of the multiple-strain model in the context
of COVID-19.

Index Terms— COVID-19, epidemic modeling, muta-
tions, mask-wearing

1. INTRODUCTION

For over a year, the rapid spread of the novel coronavirus has
crippled economies worldwide and as of February 2021, has
claimed over 2.3 million lives. Questions of how to safely re-
open schools and businesses in the midst of a pandemic are
still heavily debated. To provide informed guidelines for re-
opening, it is necessary to rely on mathematical models that
take into account the ways in which the spread of COVID-19
could change in different environments (e.g., hotter vs. colder
temperatures) and in response to different interventions (e.g.,
mask-wearing).

This work was supported in part by the National Science Founda-
tion through grants RAPID-2026985, RAPID-2026982, RAPID-2027908,
CCF-1813637, CCF-1917819 and DMS-1811724; in part by the Army Re-
search Office through grants W911NF-20-1-0204, W911NF-17-1-0587, and
W911NF- 18-1-0325; and in part by the C3.ai Digital Transformation Insti-
tute.

While there are numerous ways to model an epidemic, we
focus on an approach that captures the effects of evolution-
ary adaptations, or mutations, in viral spread. In the so-called
multi-strain model with mutations, several strains of a virus
spread through a contact network, and one strain may mutate
into another when a host is infected [1]. Recent work by Ele-
treby et al [2] on this model derived analytical predictions for
the epidemic threshold and the final fraction of infected indi-
viduals. Furthermore, they showed that epidemic models that
do not account for mutations may yield incorrect predictions
of the spread of an epidemic.

In this paper, we discuss how one may utilize the multi-
strain model with mutations as well as the analytical results
of Eletreby et al. to model the spread of COVID-19. We
first review the critical role of evolutionary adaptations in
zoonotic outbreaks and discuss recent reports on mutations
undergone by SARS-CoV-2. Through simulations, we study
how the emergence of highly virulent strains as a result of mu-
tations can significantly affect the spread of an epidemic. We
then demonstrate how the altered spread of a single-strain epi-
demic due to mask-wearing can also be modeled by the multi-
strain model with mutations. In summary, our work empha-
sizes the importance of mutation in viral spread and offers a
modeling framework for predicting the spread of COVID-19.
We remark that our work supplements our forthcoming jour-
nal publication [3], in which we elaborate on the discussions
on epidemic models and evolutionary adaptations, supply fur-
ther insights on modeling mask-wearing and mutations, as
well as additional simulations based on epidemiological prop-
erties of COVID-19.

2. MODELING THE SPREAD OF A VIRUS

Modeling the spread of an epidemic. Various epidemic
models have been proposed and studied over the past sev-
eral decades. The earliest and most widely utilized class
of models takes a population-level approach, describing the
dynamics of the fraction of susceptible and infected individ-
uals by a system of ordinary differential equations (see e.g.,
[4]). A common criticism is that such models are only math-
ematically justified if every pair of individuals are equally
likely to interact with each other, regardless of geographic
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location or other factors. Metapopulation models [5, 6] pro-
vide a more realistic approach to population-level models: a
pathogen may have different spreading characteristics in sub-
populations, and could also spread from one sub-population
to another. On the other hand, network epidemics offers a
fundamentally different modeling perspective, focusing on
the complex interactions between individuals on an underly-
ing contact network rather than population-level effects (see
[7] and references therein). The goal of the network epi-
demics is to understand how the spreading characteristics of
the virus and the structure of the contact network influence
the emergence and final reach of an epidemic.

Evolution of infectious diseases. An unrealistic aspect of
many epidemic models is that the pathogen’s spreading char-
acteristics are static. Mutations are known to occur when a
pathogen is exposed to new environments [8] and can some-
times cause the onset of an epidemic. For instance, while
the introduction of zoonotic disease1 into the human popu-
lation typically causes limited outbreaks, mutations in new
hosts can create highly virulent strains; examples include se-
vere acute respiratory syndrome (SARS), Ebola and influenza
[10]. Possible evolutionary adaptions within hosts include
gene capture from other organisms (e.g., Salmonelli enterica
and E. Coli) and recombination or reassortment (e.g., H5N1
influenza) [11]. There is evidence that multiple such events
can further increase the virulence of a pathogen [10, 12].

The novel coronavirus is an unfortunate example of the
power of evolutionary adaptations in creating highly conta-
gious and devastating pathogens. Beyond the initial mutation
that led to high inter-human transmission rates, there is evi-
dence that the novel coronavirus has undergone several sub-
sequent mutations [13] and can be classified under two major
lineages with functional differences [14]. Further genomic
studies have identified mutations in the encoding of the spike
proteins of SARS-CoV-2, which facilitated infections in host
cells [15]. As the pandemic continues, the novel coronavirus
may evolve again, possibly leading to strains that interact with
each other and the population in different ways.

A multiple-strain model with mutations. Mutations have
only been recently studied in the setting of network epidemic
models. Alexander and Day [1] proposed a multi-strain model
with mutations and derived the probability of emergence and
epidemic threshold for random contact networks with a pre-
scribed degree distribution, generated via the configuration
model [16, 17]. Subsequently, Eletreby et al [2] provided an
analysis of the expected fraction of individuals infected by
each strain, and validated the theoretical predictions on con-
tact networks from an American high school [18] and from
a hospital in Lyon, France [19]. We believe that the multi-
strain model with mutations can reasonably approximate the
spread of RNA viruses [20] such as COVID-19 which have

1A zoonosis is any disease or infection that is naturally transmissible from
vertebrate animals to humans [9].

short infectious periods and high mutability. In the follow-
ing section, we formally describe the multi-strain model with
mutations and illustrate through simulations the importance
of incorporating evolutionary adaptations into models of viral
spread. Further discussion on epidemic models and results
obtained by prior authors can be found in [3].

3. IMPACT OF MUTATIONS ON VIRAL SPREAD

In this section, we illustrate through the multiple-strain model
with mutations studied in [2] how the presence of mutations
could dramatically affect the trajectory of the COVID-19
epidemic. While prior work on this model [1, 2] considered
only long-term characterizations of the multiple-strain model
with mutations (such as the final fraction of infections),
we simulate a continuous-time model which also captures
intermediate-term effects, such as the location and height of
the epidemic peak. In [3] we model additional parameter sets
based on epidemiological data of the spread of COVID-19.

Model overview. Assume that there are number of strains of
a pathogen, and initially, there is a single vertex infected by
some strain i. The time it takes for the vertex to infect a sus-
ceptible neighbor is assumed to be an independent Exp(ri)
random variable, where ri ∈ (0,∞) is the rate of transmis-
sion when an infected individual has strain i. If an individual
is infected with strain i, then it mutates into strain j within the
host with probability µij . Subsequently, the time it takes for
the vertex to infect a susceptible neighbor is an independent
Exp(rj) random variable, where rj is the rate of transmission
for strain j. Once an individual is infected, they recover after
one time period2 and can no longer infect their neighbors. The
process terminates when no more infections are possible. An
important quantity in the analysis of this process is the trans-
missibility Ti of strain i, which is the probability that a host
carrying strain i will infect a susceptible neighbor before re-
covering. The quantities Ti and ri are related by the equation
Ti = 1−e−ri (see e.g., [21]). The underlying contact network
is generated by the configuration model [17, 16], which can
generate random graphs of any specified degree distribution.
To generate the data in Figure 1, we created a random contact
network with Poisson(5) degree distribution on 5000 nodes
and simulated the epidemic process to generate instantaneous
and cumulative infection curves. We repeated this process
1000 times and averaged over all the infection curves.

The emergence of highly virulent strains. Suppose that ini-
tially a single strain of the virus, but with some very small
probability it may mutate into a highly contagious strain. In
our simulations, we set T1 = 0.4 and T2 = 0.95.3 We ran

2The timescale of this model is relative to how often individuals have
close interactions with each other that could enable the virus to spread from
one person to another.

3We chose these parameters to illustrate this scenario. In [3], we consider
parameters based on epidemiological properties of COVID-19.
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(a)

(b)

Fig. 1. Comparison of a baseline example without mutation
(µ12 = 0) to a contagious but unlikely mutation (µ12 =
0.003). Note that the curve marked by blue dots is not vis-
ible since it completely coincides with the green dots.

simulations when (µ11, µ12) = (1.0, 0.0) and (0.997, 0.003).
We additionally set µ22 = 1.0 so that the more contagious
strain does not mutate. Our results are displayed in Figure 1.
Even if Strain 1 mutates into the highly virulent Strain 2 with
probability 0.003, the epidemic peak is significantly earlier
and higher than the baseline example where µ12 = 0; fur-
thermore, the bulk of the infections comes from Strain 2. In
other words, if a strain is highly virulent then it tends to be the
cause of most of the infections, even if such a mutation may
be unlikely. We show in [3] that this phenomenon holds for
additional transmissibilities and mutation probabilities µ12.

4. EFFECTIVENESS OF MASK-WEARING

Here we describe how our multiple-strain model with mu-
tations can be used to assess the effectiveness of certain
mitigation strategies, focusing on the specific case of mask-
wearing. The high-level idea is that if an individual wears a
mask, it is harder for them to transmit the virus to others. To
phrase things in terms of our multiple-strain model, one can
imagine that infected mask-wearers carry a less-contagious

strain of the virus compared to infected non-mask-wearers.
We formally describe the analogy between mask-wearing and
a multi-strain model with mutations below.

Define the transmissibilities TMM , TMN , TNM and TNN ,
where TMM is the transmissibility between an infected mask-
wearer and a susceptible mask-wearer, TMN is the transmis-
sibility between an infected mask-wearer and a susceptible
non-mask-wearer, with similar interpretations for TNM and
TMM .4 We assume TMM < TMN < TNM < TNN . Clearly,
TMM (resp. TNN ) is the smallest (resp. largest) of the trans-
missibilities. We further assume that TMN < TNM since
masks help limit respiratory droplets from an infected per-
son, but are less effective in limiting transmission from an
infected non-mask-wearer [22]. Let p denote the fraction of
mask-wearers in the population and assume that each person
wears a mask with probability p, independently across all in-
dividuals. Starting with a single infected individual, the virus
propagates in an analogous manner to the multi-strain model
with mutations described in Section 3. For brevity, we refer
to this model as the mask model.

In Figure 2, we simulate the spread of a single strain on
random contact networks for various values of p. The con-
tact network was generated by the configuration model with
Poisson(5) degree distribution and 5000 vertices. We set
TMM = 0.3, TMN = 0.4, TNM = 0.5, TNN = 0.6 and
simulated the continuous-time epidemic spread in the same
manner as the simulations of Section 3, e.g., we have a rate of
transmission rMM related to TMM by TMM = 1 − e−rMM .
We averaged the epidemic curves over 100 simulations. Fig-
ure 2(a) indicates that as more of the population wears a mask,
the epidemic peak occurs later and is less intense, thereby
“flattening the curve”. In Figure 2(b), the epidemic still man-
ages to reach over half of the population even if everyone
wears a mask, but at a slower rate. Similar behavior is ob-
served for other network parameters and transmissibilities [3].

We can relate the mask-model to a two-strain model with
mutations. Let T1 (resp. T2) be the average transmissibility
of a mask-wearer (resp. non-mask-wearer). Since there is a p
fraction of mask-wearers and a (1− p) fraction of non-mask-
wearers in the neighborhood of a vertex, we have

T1 := TMM · p+ TMN · (1− p)
T2 := TNM · p+ TNN · (1− p).

(1)

In this analogy, if an individual is infected with Strain 1 (resp.
Strain 2), then they are a mask-wearer (resp. non-mask-
wearer). Hence µ11 can be interpreted as the probability that
a newly-infected individual wears a mask given that they
were infected by a mask-wearer. Similar interpretations hold

4These transmissibilities represent average values, which is evident when
we describe the corresponding continuous-time model.
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(a)

(b)

Fig. 2. Instantaneous and cumulative infection curves as a
function of p, the fraction of the population wearing a mask.

for µ12, µ21, µ22. By Bayes’ formula,

µ11 =
TMM ∗ p

TMM ∗ p+ TMN ∗ (1− p)

µ12 =
TMN ∗ (1− p)

TMM ∗ p+ TMN ∗ (1− p)

µ21 =
TNM ∗ p

TNM ∗ p+ TNN ∗ (1− p)

µ22 =
TNN ∗ (1− p)

TNM ∗ p+ TNN ∗ (1− p)
.

(2)

In (1) and (2), we assumed that the fraction of susceptible
mask-wearers (resp. non-mask-wearers) in a vertex’s neigh-
borhood is exactly p (resp. 1−p). Once the epidemic spreads
to a large number of individuals, it is possible that the frac-
tion of susceptible mask-wearers in a neighborhood increases,
since the virus has a higher transmissibility among non-mask-
wearers. We therefore expect that the analogy is accurate in
the early stages of the viral spread and may diverge once a
large fraction of the population has been infected. Figure 3
confirms this intuition. Figure 3(a) shows that the infection
curves for the mask model and mutation model are nearly
identical until a large fraction of the population has been in-
fected, and Figure 3(b) shows that the analytical predictions

(a)

(b)

Fig. 3. Comparison of the evolution of the mask model and
mutation model epidemic curves (a) and a comparison of the
final fraction of infected nodes in the mask model, mutation
model and theoretical predictions for the mutation model (b).

for the mutation model are slightly inaccurate for the mask
model. This inaccuracy does not seem to be caused by finite-
network effects or approximation errors [3]. We believe that
the analogy between mask-wearing and mutation is a useful
tool for understanding the early and intermediate-term spread
of an epidemic. Deriving corrections to predict the long-term
spread will be a focus for future work.

5. CONCLUSION

In this paper, we have emphasized the importance of incor-
porating mutation into models of viral spread especially in
light of the ongoing mutations of COVID-19. Through simu-
lations, we have illustrated the potential impact of an unlikely
mutation into a virulent strain. We have also shown how the
mutation model can be used to model mitigation strategies,
such as mask-wearing. Future directions include investigat-
ing the relation between the mask and mutation models and
fitting our model to data from the COVID-19 pandemic.
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