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ABSTRACT

Polyphonic sound event detection and localization (SELD) task is
challenging because it is difficult to jointly optimize sound event
detection (SED) and direction-of-arrival (DOA) estimation in the
same network. We propose a general network architecture for SELD
in which the SELD network comprises sub-networks that are pre-
trained to solve SED and DOA estimation independently, and a
recurrent layer that combines the SED and DOA estimation outputs
into SELD outputs. The recurrent layer does the alignment between
the sound classes and DOAs of sound events while being unaware
of how these outputs are produced by the upstream SED and DOA
estimation algorithms. This simple network architecture is compat-
ible with different existing SED and DOA estimation algorithms.
It is highly practical since the sub-networks can be improved inde-
pendently. The experimental results using the DCASE 2020 SELD
dataset show that the performances of our proposed network archi-
tecture using different SED and DOA estimation algorithms and
different audio formats are competitive with other state-of-the-art
SELD algorithms. The source code for the proposed SELD network
architecture is available at Github1.

Index Terms— direction-of-arrival estimation, network archi-
tecture, sound event detection, recurrent neural network.

1. INTRODUCTION

Polyphonic sound event localization and detection (SELD) find
a wide range of applications in urban sound sensing [1], wild
life monitoring [2], surveillance [3], autonomous driving [4], and
robotics [5]. The SELD task [6] recognizes the sound class, and
estimates the direction-of-arrival (DOA), the onset, and offset of
a detected sound event. Polyphonic SELD refers to cases where
multiple sound events overlap in time.

SELD is an emerging topic in audio processing. It consists of
two subtasks, which are sound event detection (SED) and DOA es-
timation (DOAE). These two subtasks are mature research topics,
and there exists a large body of effective algorithms for SED and

∗This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for
Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommu-
nications Limited (Singtel) and Nanyang Technological University (NTU) that is funded
by the Singapore Government through the Industry Alignment Fund - Industry Collab-
oration Projects Grant.

1https://github.com/thomeou/General-network-architecture-for-sound-
event-localization-and-detection

DOAE [7, 8]. Over the past few years, majority of the methods pro-
posed for SELD have focused on jointly optimizing SED and DOAE
in the same network. Hirvonen formulated the SELD task as multi-
class classification where the number of output classes is equal to
the number of DOAs times the number of sound classes [9]. Ada-
vanne et al. proposed a single-input multiple-output CRNN model
called SELDnet that jointly detects sound events and estimates their
DOAs [6]. It has been shown that the joint optimization indeed af-
fects the performance of both the SED and DOAE subtasks. Al-
ternatively, Cao et al. proposed a two-stage strategy to train two
separate SED and DOA models [10] and used SED outputs as masks
to select DOA outputs. This training scheme significantly improves
the SELD performance over the jointly-trained SELDnet. Cao et
al. later proposed a jointly-trained SELD network [11] that takes
raw audio waveform as input and segregates the SELD output into
event-independent tracks of events, which was first proposed in [12].
Huy et al. improved jointly-trained SELD models by adding an at-
tention layer and using mean-square-error loss for SED instead of
cross-entropy loss [13]. The top-ranked solution for DCASE 2020
SELD challenge improved the jointly-trained models by synthesiz-
ing a larger dataset from the provided data and exploiting a large
ensemble of complex networks [14].

The advantage of a jointly-trained network for SELD is clear
since it needs only one joint network and requires a single forward-
pass on the audio signal to produce the final predictions. However,
it is challenging to jointly train multi-task networks as large models
are prone to over-fitting and the subtasks’ convergence may be out-
of-sync [15]. In the context of SELD, when the SED and DOAE
subtasks share a sub-network, this sub-network is potentially pulled
in different directions during the joint optimization because the for-
mer relies on spectro-temporal patterns of the audio signals while the
latter relies on the phase or magnitude differences between the input
channels. In addition, joint training requires datasets with joint anno-
tations. However, such datasets are difficult to collect and annotate
accurately. The current most popular SELD dataset was simulated
and limited to 10-hour long [16].

Our previously proposed sequence matching network (SMN)
shows that it might be more beneficial to train SED and DOAE sepa-
rately than jointly [12, 17]. However, these SMNs are tied to a signal
processing-based method for DOAE and it is not straightforward to
accommodate other DOAE algorithms. In this paper, we propose
a novel network architecture for SELD as shown in Fig. 1. In this
architecture, the networks for SED and DOAE are pre-trained inde-
pendently. An alignment network based on recurrent neural network
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Fig. 1: A general SELD network architecture.

(RNN) is then trained to align the SED and DOA output sequences
on the basis that overlapping sounds often have different onsets and
offsets. By matching the onsets, the offsets, and the active segments
in the output sequences of the sound event detector and the DOA es-
timator, we can associate the estimated DOAs with the correspond-
ing sound classes. For 2D SELD, the DOAE module only needs
to estimate azimuth. When 3D SELD is required, both azimuth and
elevation will be separately estimated by the DOAE module. The az-
imuth and elevation decoupling significantly reduces the dimension
of the DOA outputs. We choose classification format for both SED
and DOAE subtasks since it is generally easier to optimize a classi-
fication model than a regression model. In addition, the classifica-
tion is necessarily multi-label to tackle the polyphonic events. The
SELD output can be in class-wise format [6, 10] or track-wise for-
mat [12, 11]. The proposed SELD network architecture offers sev-
eral advantages. First, it is easier to optimize as the SED and DOAE
modules are trained separately. Second, as a generic framework, it
can accommodate various SED and DOAE algorithms which may
be constrained to a specific application. Third, the network archi-
tecture offers a robust SELD system without unwanted association
between sound classes and DOAs since the SED and DOAE mod-
ules are pre-trained independently. Fourth and most importantly, the
proposed network architecture is highly practical. Each module can
be improved independently and existing task-specific SED or DOAE
datasets (rather than joint annotation) can be utilized for fine-tuning.
In addition, we argue that the alignment network requires smaller
joint SELD datasets to train compared to a joint SELD model trained
from scratch since the alignment network is light-weight, uses high-
level inputs, and does not need to know how SED and DOAE outputs
are produced by the upstream modules.

In this paper, we demonstrate the practicality and efficacy of
the proposed architecture by incorporating different SED and DOAE
algorithms for both first-order ambisonic (FOA) and mic-array for-
mat. Specially, for each input format, we pre-train two different SED
models and two different DOA models. Transfer learning is used for
one SED model to demonstrate how available datasets can be utilized
for SED. One of the DOA model is based on signal-processing algo-
rithm while the other purely relies on deep learning. A bidirectional
GRU is used to realize the RNN in the alignment network. Experi-
mental results using the DCASE 2020 SELD dataset show that our
proposed framework obtains competitive performances compared to
other state-of-the-art SELD algorithms. The rest of our paper is or-
ganized as follows. Section II describes our proposed SELD frame-
work. Section III presents the experimental results and discussions.
Finally, we conclude the paper in Section IV.

2. A GENERAL NETWORK ARCHITECTURE FOR SELD

Fig. 1 shows the block diagram of the proposed SELD framework.
Both the SED and DOAE subtasks are formulated as multi-label
multi-class classification to tackle the multiple-source problem.
Each module takes in its respective input features and produces
classification outputs for each frame. Particularly. the DOAE mod-

ule has two output branches for azimuth and elevation. In the case
of 2D SELD, the elevation branch can be removed. The SED and
DOAE outputs are then concatenated along the classification-output
dimension and presented to the alignment network whose task is to
associate the sound classes and the DOAs. The alignment network,
which is implemented by an RNN, is learned to produce SELD pre-
dictions either in class-wise or track-wise format. We use class-wise
format here for simplicity purpose. The whole SELD system is
trained in two stages. First, the SED and DOAE modules are pre-
trained independently. After that, the alignment network is trained
by treating the SED and DOAE modules as feature extractors. The
weights of SED and DOAE modules in the second training stage can
either be fixed or fine-tuned. In this work, we fix the weights of the
pre-trained SED and DOAE models.

2.1. Sound event detection

Both SED and DOAE modules are built using a convolutional recur-
rent neural network (CRNN) as illustrated in Fig. 2. The CRNN
architecture consists of 4 Conv blocks, followed by bidirectional
gated recurrent units (GRUs) of size 128, and a fully connected (FC)
layer. The SED network has 1 layer of GRU with hidden size of
128. The numbers of filters of the 4 Conv blocks are shown in Ta-
ble 1. For each audio format, we train two SED models that use
multi-channel and single-channel log-Mel spectrogram with 128 and
64 filters as inputs, respectively. To demonstrate the flexibility of
the SELD framework, we train another SED model, SED-T, using
transfer learning. The weights of the 4 Conv blocks of the SED-T
model is initialized using a pre-trained convolutional neural network
(CNN) model named Cnn14 mAP=0.431 [18], which was trained on
the Audioset dataset [19]. Mix-up, frequency shift, random-cutout,
and specaugment are used for data augmentation [17]. Both of the
SED models are trained using binary cross-entropy loss.

2.2. Direction-of-arrival estimation

We train a multi-task multi-label CRNN model that predicts azimuth
and elevation separately. The DOAE network has 4 Conv blocks,
followed by 2 bidirectional GRUs of size 128 and 2 FC layers. One
FC layer outputs azimuth estimation, and the other outputs elevation
estimation. Details of the DOAE networks are shown in Table 1. The
input features of the DOA-iv and DOA-gcc models for FOA and
mic-array format are intensity vectors (IV) and generalized cross-
correlation with phase transform (GCC-PHAT), respectively.

To demonstrate that the SELD network architecture can also be
used with signal processing-based DOAE methods, we use a single-
source (SS) histogram algorithm that was used in our previous pro-
posed SMN [12, 17]. This algorithm outputs a directional histogram
of SS bins for each input frame. More information about this method
can be found in [17] and [20]. To convert the histogram into the
multi-label multi-class classification format, we marginalize the 2D
histograms into two 1D histograms of azimuth and elevation for each
frame. Then, we stack the 1D azimuth histograms of consecutive
frames together and use these 2D pseudo images as input features
for a CRNN model (AZI-hist) to predict azimuth. Similar procedure
is used for elevation model ELE-hist. The details of the AZI-hist
and ELE-hist networks are shown in Table 1. Note that we only use
the FOA format to train the AZI-hist and ELE-hist since the pro-
vided steering vector of the mic-array format is convoluted and not
directly applicable for the SS histogram method.



n_frames = 60
n_sound_classes = 14
n_azimuths = 72
n_elevations = 19

In
pu

t

Block I – Conv Block Block II

Input size: n_channels x n_frames x n_features

SED/DOAE Network Architecture
C

on
v2

d
 (

3x
3

)
 B

N
, R

eL
U

C
on

v2
d

 (
3x

3
)

 B
N

, R
eL

U

a
vg

 p
o

o
lin

g 
(2

,2
) 

Block III

b
id

ir
e

ct
io

n
al

G
R

U
 (

1
2

8
)

Block IV
d

ro
p

o
u

t
(p

=0
.2

)

Block V

FC
 (

2
56

 x
 

n
_c

la
ss

e
s)

Block VII

T
e

m
p

o
ra

l 
u

p
sa

m
p

le
 (

2
)

Output size: n_frames x n_classes

O
u

tp
u

t

Alignment Network Architecture

C
Block VI

Si
gm

o
id

Concatenation

SED 
prediction

(size: 60 x 14)

SED: 60 x 14

Azimuth 
prediction

(size: 60 x 72)

Elevation 
prediction

(size: 60 x 19)

C

X: 60 x 14

Y: 60 x 14

Z: 60 x 14

SED 
prediction

(size: 60 x 14)

SED: 60 x 14

Azimuth 
prediction

(size: 60 x 72)

Elevation 
prediction

(size: 60 x 19)

C

X: 60 x 14

Y: 60 x 14

Z: 60 x 14

SED: multi-label multi-class classification

X, Y, Z coordinates on unit sphere: regression

Inference: select sound classes -> select X, Y, Z

Fig. 2: Left: Block diagram of the SED and DOAE networks. nframes is the number of input frames. nchannels and nfeatures depend on
types of input features. Both SED and DOAE are formulated as multi-label multi-class classification. Right: Block diagram of the alignment
network. During inference, classes with prediction probabilities above a SED threshold are selected as active classes. DOAs of the events
associated with these classes are selected correspondingly. nframes in the alignment network is different from the nframes in the SED/DOAE
network due to difference in input feature frame rate and label frame rate in the DCASE 2020 dataset.

Table 1: Hyper-parameters for SED and DOAE networks

Model Audio format Output Input feature # of input channel # of input features # of Conv2d filters # of GRU layer GRU hidden size
SED-M FOA, mic-array n sound classes=14 mutil-channel log-mel 4 128 (Mel filters) 64-128-256-512 1 128
SED-T FOA, mic-array n sound classes=14 single-channel log-mel 1 64 (Mel filters) 64-128-256-512 1 128

DOA-iv FOA n azis=72, n eles=19 intensity vector 3 128 (Mel filters) 32-64-128-256 2 128
DOA-gcc mic-array n azis=72, n eles=19 GCC-PHAT 6 128 (time lags) 32-64-128-256 2 128
AZI-hist FOA n azis=72 azimuth histogram 1 72 (n azis) 32-64-128-256 2 128
ELE-hist FOA n eles=19 elevation histogram 1 19 (n eles) 16-32-64-128 2 64

2.3. Alignment network using RNN

The core component of the alignment network is an RNN as shown
in Fig. 2. As previously mentioned, we realize the RNN using two
bidirectional GRU layers. The hidden size of the GRU is 128. In
this paper, we use the class-wise output format for SELD to simplify
the optimization process. This proposed alignment network can be
easily modified to suit different SELD output formats by changing
the FC layers and their corresponding activation layers [12]. SED
is formulated as multi-label multi-class classification while DOAE
is formulated as regression. The total loss of the alignment network
is a weighted sum of SED binary cross-entropy loss and DOA re-
gression’s mean-squared error loss. We only computed DOA mean-
squared error loss for frames with labelled active classes. For each
frame, the alignment network outputs the probabilities of all sound
classes, and their DOAs. The DOA output format is the (x, y, z) co-
ordinate on the unit sphere. During inference, we first select active
classes whose classification probabilities are above a SED threshold.
After that, the the DOA values corresponding to these active events
are selected.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

We used the DCASE 2020 SELD dataset [16] for our experiments.
This dataset provides both FOA and mic-array format with 4 micro-
phones. The dataset consists of 400, 100, and 100 one-minute audio
clips for training, validation, and testing, respectively. There are 14
sound classes. The azimuth and elevation ranges are [−180◦, 180◦)

and [−45◦, 45◦], respectively. We used an angular resolution of
5◦. As a result, the number of discrete azimuths and elevations was
nazimuths = 72 and nelevations = 19 respectively. Validation set
was used for model selection while test set was used for evaluation.

3.1. Evaluation metrics

The 2020 SELD evaluation metrics [21], which are the official met-
rics of the DCASE 2020 SELD challenge, were used to evaluate the
SELD performance. A sound event was considered a correct de-
tection if it has correct class prediction and its estimated DOA is
less than 20◦ from the DOA ground truth. The DOA metrics were
computed for each class before averaging across all classes. The
DCASE 2020 SELD task adopted four evaluation metrics: DOA-
dependent error rate (ER), F1-score for SED; and SED-dependent
DOA error (DE), frame recall (FR) for DOA. A good SELD system
should have lower ER, high F1, low DE, and high FR. We also re-
ported SELD error which was computed as SELD = (ER+ (1−
F1) + DE/180 + (1 − FR))/4 to aggregate all four metrics. In
addition, we used segment-based ER and F1 to evaluate the SED
networks with segment length of 1 second. We used mean average
precision to evaluate azimuth and elevation classification to avoid
the usage of a threshold.

3.2. Hyper-parameters and training procedure

Hyper-parameters for audio processing are sampling rate of 24 kHz,
window length of 1024 samples, hop length of 300 samples (12.5



Table 2: Experimental results for SELD. ↓ indicates the lower the better. ↑ indicates the higher the better.

FOA Mic-array
Group SELD model SED model DOA model ER↓ F1(%)↑ DE↓ FR(%)↑ SELD↓ ER↓ F1(%)↑ DE↓ FR(%)↑ SELD↓

Baseline

SELDnet [16] - - 0.720 37.4 22.8◦ 60.7 0466 0.780 31.4 27.3◦ 59.0 0.506
SELD-Huy [13] - - 0.600 49.2 19.0◦ 65.6 0.390 0.590 50.8 18.2◦ 64.1 0.380
SELD-Cao [11] - - 0.470 61.5 16.7 75.4 0.298 - - - - -

SMN [17] - - 0.401 66.6 15.0◦ 81.0 0.252 - - - - -
Proposed

SELD
frame-
work

SELD-M SED-M DOA-iv or DOA-gcc 0.445 62.5 19.7◦ 80.5 0.281 0.478 59.2 23.6◦ 78.8 0.307
SELD-T SED-T DOA-iv or DOA-gcc 0.424 64.1 18.2◦ 80.1 0.267 0.455 61.0 23.8◦ 81.7 0.290

SELD-M-hist SED-M AZI-hist + ELE-hist 0.443 62.8 18.0◦ 80.3 0.279 - - - - -
SELD-T-hist SED-T AZI-hist + ELE-hist 0.437 63.0 19.6◦ 82.2 0.276 - - - - -

Table 3: Experimental results for SED

FOA Mic-array
Model ER F1 ER F1

SED-M 0.302 80.0 0.302 79.2
SED-T 0.263 82.1 0.266 82.1

ms), Hann window, and 1024 FFT points. As a result, the input
frame rate for SED and DOAE networks was 80 frames per second.
The input and output frame rate of the alignment network was the
same as the label frame rate, which was 10 frames per second. Be-
cause the SED and DOAE networks made use of pooling four times
with a kernel size of (2, 2), we temporally up-sampled the outputs
of these networks by a factor of 2 to match the label frame rate.
We used inputs of length 4 seconds to train SED and DOAE mod-
els, and input lengths of 6 seconds to train the alignment networks.
The loss weights for SED and DOAE in the alignment network were
set to (0.7, 0.3). Adam optimizer was used to train all the models.
Learning rate was set to 0.001 and gradually decreased to 0.0001.
The SED-T models with transferred weights were fine-tuned for 20
epochs. The number of training epochs for the SED/DOAE and the
alignment network were 60 and 100, respectively. A threshold of
0.3 was used to decide active classes in the SED outputs.

3.3. Baselines and the proposed SELD models

We mixed and matched different pre-trained SED and DOA models
with the alignment models to form different SELD models as shown
in Table 2. We compared these SELD models with top-ranked SELD
systems in the DCASE 2020 SELD challenge. We selected baselines
that used only one audio format and did not use ensemble for a fair
comparison. The following four baselines were considered:

• SELDnet: jointly-trained SELD model [16], baseline of DCASE
2020 SELD challenge,

• SELD-Huy: jointly-trained SELD model with attention and MSE
loss for both SED and DOAE [13], ranked 6th,

• SELD-Cao: jointly-trained SELD model with track-wise output
format [11], ranked 4th,

• SMN: our previously-proposed SMN for SELD [17], whose an
ensemble ranked 2nd.

3.4. SELD experimental results

Table 3 shows the experimental results for SED on the test set. For
both FOA and mic-array audio formats, the model SED-T with trans-
ferred weights outperforms the model SED-M which was trained
from scratch. This confirms the benefit of transfer learning in im-
proving the performance of the SED models. Tabel 4 shows the ex-
perimental results for DOAE. The AZI-hist model obtained the best

Table 4: Experimental results for DOAE

Model DOA-iv DOA-gcc AZI-hist ELE-hist
Azimuth mAP 0.339 0.426 0.509 -
Elevation mAP 0.391 0.406 - 0.400

mAP score for azimuth. The SS histogram method was developed to
tackle multi-source cases in reverberant and noisy environments by
using only SS time-frequency bins to estimate DOA. As expected,
it performs better than DOA-gcc and DOA-iv which were trained
from GCC-PHAT and IV features without any treatment to deal with
multi-source, reverberation and noise. Elevation is more difficult to
estimate than azimuth. All three models have similar mAP scores
for elevation estimation.

Table 2 shows the experimental results for the joint task SELD.
All the proposed SELD models result in very competitive perfor-
mance compared to the baseline models. The SELD models for
mic-array format have lower performance than the SELD models
for FOA format. For FOA format, the model SED-T is ranked sec-
ond just after the SMN. For mic-array format, the model SED-T is
ranked first thanks to the absence of baseline models in mic-array
format. These results show that our proposed network architecture
work well with different audio formats and different sub-networks
for both SED and DOAE. Even though the DOA-iv and DOA-gcc
models result in lower standalone performance than the AZI-hist and
ELE-hist, the joint SELD models formed by the DOA-iv and DOA-
gcc models achieve similar performance as the joint SELD model
formed by AZI-hist and ELE-hist. The SELD models that use the
SED-T model with transfer learning from the Audioset dataset per-
forms slightly better than the SELD models that use the SED-M.
These performance gains could not be obtained if multi-channel in-
put features were used to train the SED models because we do not
have any large-scale multi-channel dataset available at the moment.
The performance of our proposed SELD models is lower than those
of the SMN model for FOA format most likely because the SMN
combines part of the DOAE network and the alignment network.
This results suggest that we should fine-tune the whole SELD mod-
els after pre-training the sub-networks for SED and DOAE.

4. CONCLUSIONS

In conclusion, we have proposed a simple yet effective network
architecture for SELD with pre-trained sub-networks for SED and
DOAE, and an RNN-based alignment network that matches and
fuses the SED and DOAE outputs. For future work, we would like
to explore if fine-tuning the pre-trained SED and DOAE components
could further improve the SELD performance. There is also room
for improvement in terms of architectures for the alignment network.
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