
REFLECTANCE-ORIENTED PROBABILISTIC EQUALIZATION
FOR IMAGE ENHANCEMENT

Xiaomeng Wu†, Yongqing Sun‡, Akisato Kimura†, and Kunio Kashino†

† Communication Science Laboratories, NTT Corporation, Japan
‡ Media Intelligence Laboratories, NTT Corporation, Japan

ABSTRACT
Despite recent advances in image enhancement, it remains difficult
for existing approaches to adaptively improve the brightness and
contrast for both low-light and normal-light images. To solve this
problem, we propose a novel 2D histogram equalization approach. It
assumes intensity occurrence and co-occurrence to be dependent on
each other and derives the distribution of intensity occurrence (1D
histogram) by marginalizing over the distribution of intensity co-
occurrence (2D histogram). This scheme improves global contrast
more effectively and reduces noise amplification. The 2D histogram
is defined by incorporating the local pixel value differences in im-
age reflectance into the density estimation to alleviate the adverse
effects of dark lighting conditions. Over 500 images were used for
evaluation, demonstrating the superiority of our approach over ex-
isting studies. It can sufficiently improve the brightness of low-light
images while avoiding over-enhancement in normal-light images.

Index Terms — 2D histogram equalization, reflectance, Retinex
model, contrast enhancement, image enhancement

1. INTRODUCTION

Image enhancement aims to enhance image contrast and reveal hid-
den image details. With the rapid development of digital imaging
devices, the number of images out there and the demand for image
enhancement has increased significantly. Commercial raster graph-
ics editors require image editing expertise or considerable manual
effort to produce satisfactory image enhancement. Therefore, it is
essential to develop an automated image enhancement technique that
adapts to different input lighting conditions. Existing approaches to
image enhancement can be classified into model-based approaches
and learning-based ones. We focus on model-based approaches, as
they are more interpretable and do not need labeled training data.

In model-based approaches, histogram equalization (HE) has re-
ceived the most attention. It derives an intensity mapping function
such that the entropy of the distribution of output intensities is max-
imized. However, HE extends the contrast between intensities with
large populations to a wider range, even if it is not semantically im-
portant. This issue has been addressed by incorporating spatial in-
formation into density estimation [1–7]. For example, 2DHE [2, 3]
equalizes the 2D histogram of intensity co-occurrence so that the
contrast between frequently co-occurring intensities is enhanced to
a greater extent. CACHE [6] incorporates image gradients into his-
togram construction to avoid the excessive enhancement of trivial
background. However, such spatial information is not discrimina-
tive enough, especially for low-light image areas. Their equalization
schemes [2,3,6] also overemphasize the importance of the frequently
co-occurring intensities, tending to cause precipitous brightness fluc-
tuation in very dark or very bright image areas.

Another direction [8–17] is based on the Retinex model. It takes
an image as a combination of illumination and reflectance compo-
nents, which capture global brightness and sharp image details, re-
spectively. Some studies [8–12] assumed reflectance to be the de-
sired enhancement output and obtained it by estimating and remov-
ing illumination. However, this strategy sometimes leads to exces-
sively enhanced brightness. In other studies, LIME [15] assumes that
the gamma correction of the reflectance is the ideal form of low-light
image enhancement. In NPE [13] and NPIE [16], the illumination
is enhanced with HE and recombined with the reflectance to recon-
struct the enhanced image. Ren et al. [17] found that the illumination
can be leveraged as the exposure ratio of a camera response function
(CRF), and proposed a novel CRF-based image enhancement ap-
proach called LECARM. These approaches are valid for discovering
dark image details. However, it is not easy for them to find a solution
optimized for both low-light and normal-light images; they tend to
overly amplify the brightness and saturation of normal-light images.

Here, we propose a novel 2DHE approach known as reflectance-
oriented probabilistic equalization (ROPE), which allows for adap-
tive regulation of global brightness. ROPE assumes intensity occur-
rence and co-occurrence to be dependent and derives the distribution
of intensity occurrence (1D histogram) by marginalizing over the
distribution of intensity co-occurrence (2D histogram). This scheme
builds a novel bridge between 1D and 2D histograms. Compared
to related approaches such as CVC [2] (2DHE) and CACHE [6, 7]
(1DHE), ROPE provides more adequate contrast enhancement and
less noise amplification. Inspired by RG-CACHE [7], we define a
novel 2D histogram by incorporating the local pixel value differ-
ences in image reflectance into the density estimation to alleviate the
adverse effects of dark lighting conditions. Experiments show that
ROPE outperforms state-of-the-art image enhancement approaches
from both qualitative and quantitative perspectives.

2. PROPOSED APPROACH

2.1. Preliminaries

Given a color image Cin, its grayscale image Ain is defined as the
max of its RGB components and is equal to its value channel in HSV
space [18]. Let Aout be the enhanced image of Ain in ROPE. Let ◦
and � denote element-wise manipulation and division, respectively.
The final output Cout is computed as

Cout = (Cin �Ain) ◦Aout. (1)

Let Ain = {a(q)} and Aout = {â(q)}, where a(q) ∈ [0,K) and
â(q) ∈ [0,K) are the intensities of the pixels q in the input and out-
put, respectively. K is the total number of possible intensity values
(typically 256). Our goal is to find an intensity mapping function T
of the form â(q) = T (a(q)) to produce the enhanced image.
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(a) CVC [2]
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(b) CACHE [6, 7]
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(c) ROPE

Fig. 1. Toy examples showing how the 2D histogram value p(ci,j)
(blue square) is embedded in the 1D histogram. While previous ap-
proaches overemphasize the frequently co-occurring intensities i and
j, ROPE allows for more adequate and moderate contrast enhance-
ment by distributing p(ci,j) over all k ∈ (i, j].

Let ok be the event of a(q) = k (occurrence), where a(q) ∈ Ain

and k ∈ [0,K) is an intensity value. Let p(ok) be its probability.
The 1D histogram of Ain can then be expressed by {p(ok)}. Let
P (ok) be the cumulative distribution function of p(ok). In HE, the
intensity mapping function T (·) is given by T (k) = KP (ok) − 1.
The problem is how to properly define p(ok).

2.2. Modeling of 1D Histogram as Marginal Probability

In ROPE, we define p(ok) based on the 2D histogram of Ain. Let
ci,j be the event of a(q) = i and a(q′) = j (co-occurrence), where
q′ ∈ N (q) and N (q) is the set of coordinates in the local window
centered on the pixel q. Let p(ci,j) be its probability. Then the 2D
histogram can be written as {p(ci,j)} with i, j ∈ [0,K) and i < j.
The construction of this 2D histogram is discussed in Section 2.3.

In CVC [2], given two intensities i and j, their 2D histogram
value p(ci,j) is voted into the bin of the larger intensity j and added
to the 1D histogram value p(oj), as illustrated in Fig. 1a. Similarly,
CACHE [6,7] votes p(ci,j) into the bins of both intensities (Fig. 1b).
These schemes overemphasize p(oi) and/or p(oj) and thus tend to
cause precipitous brightness fluctuation in very dark or bright image
areas as shown in Figs. 2b and 2e. Instead, we aim to find a proper
method to distribute p(ci,j) over all k ∈ (i, j] for more adequate
contrast enhancement (Fig. 1c as well as Figs. 2c and 2f).

Our thinking is as follows. Wu et al. [6, 7] have revealed that in
HE, for any k ∈ (0,K), the degree of contrast enhancement (CE)
between k − 1 and k is ultimately proportional to p(ok). Thus, for
any i, j ∈ [0,K), the degree of CE between i and j is proportional to∑j

k=i+1 p(ok). Meanwhile, related studies [2, 3] suggested that in
2DHE, p(ci,j) needs to be defined in such a way that it is positively
correlated with the requirement of CE between i and j. These two
insights lead to the inference that p(ok) should be modeled such
that p(ci,j) ∝

∑j
k=i+1 p(ok). This confirms our motivation above:

p(ci,j) should not be delegated to p(i) and/or p(j) alone, but should
be distributed over all k ∈ (i, j].

Now, we would like to build a bridge between p(ok) and p(ci,j).
We assume that ok and ci,j are dependent on each other. If we con-
sider ok to be a marginal event, its distribution p(ok) can be obtained
by marginalizing over p(ci,j):

p(ok) =

K−2∑
i=0

K−1∑
j=i+1

p(ok|ci,j)p(ci,j), (2)

(a) Input (b) RG-CACHE [7] (c) ROPE

(d) Input (e) RG-CACHE [7] (f) ROPE

Fig. 2. Comparison of RG-CACHE [7] and ROPE.

where p(ok|ci,j) is the conditional probability of ok given ci,j . This
formula implies that the 1D histogram value p(ok) can be modeled
as a weighted average of all 2D histogram values p(ci,j). The con-
ditional probabilities p(ok|ci,j) act as weights.

Recall that it is necessary to determine p(ok) in such a way that
p(ci,j) ∝

∑j
k=i+1 p(ok). Therefore, it is reasonable to assume that

ok and ci,j are dependent on each other, i.e., p(ok|ci,j) 6= 0, if and
only if k ∈ (i, j]; otherwise, ok and ci,j are mutually exclusive and
p(ok|ci,j) = 0. In view of this, we introduce a significance factor
sk for all k ∈ [0,K) and define the conditional probabilities by

p(ok|ci,j) =


sk∑j

k′=i+1 sk′
if k ∈ (i, j]

0 otherwise.
(3)

The intensity value k, which requires a greater contrast between
k− 1 and k, should have a greater value of sk, and vice versa. How-
ever, we have no idea which intensity values are more important than
others. In this study, we propose to determine sk through an iterative
method. Let t ∈ [1, τ ] be the index of the iteration and τ be the max-
imum number of iterations. When t = 1, we initialize s(1)k = 1/K

for all k ∈ [0,K) and compute p(1)(ok) using Eq. 2. For all t > 1,
we update s(t)k with s(t)k = p(t−1)(ok) and recalculate p(t)(ok) us-
ing the updated significance factor. In this way, we can guarantee
that ok with a larger probability p(ok) tends to have a larger signifi-
cance factor and thus tends to receive more contribution from the 2D
histogram values p(ci,j). Empirically, we found that two iterations
are sufficient for ROPE to achieve satisfactory performance.

Fig. 2 compares RG-CACHE [7] and our approach. Using RG-
CACHE, dark and bright intensity values fluctuated sharply, causing
blurred contrast (Fig. 2b) and eerie artifacts (Fig. 2e). In comparison,
ROPE achieved more high-quality and reliable enhancement.

2.3. Embedding Reflectance in 2D Histogram

Next, we describe how to construct the 2D histogram of the gray-
scale image Ain. In CVC [2], the histogram value p(ci,j) is deter-
mined as the co-occurrence frequency of the intensity value j in the
local window centered on the pixel of intensity i, further weighted
by |i − j|. RG-CACHE [7] directly constructs a 1D histogram by
incorporating the gradient of image reflectance into the density esti-
mation. In this study, we borrow the idea of RG-CACHE to mitigate
the negative effect of dark lighting conditions but embed the image
reflectance into a 2D histogram instead of a 1D histogram.



(a) Input Ain (b) p(ci,j) for CVC (c) p(ci,j) for ROPE
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(e) Mapping function T (f) Reflectance R

(g) Aout for CVC (h) Aout for PE (i) Aout for ROPE

Fig. 3. Comparison of ROPE with CVC [2] and PE. (b) and (c): 2D
histograms whose x and y-axes are intensities in [0, 256); histogram
values are shown in color on a log scale. In (h), PE means the 2D
histogram of CVC was used for equalization.

Let I and R be the illumination and the reflectance components
of Ain, respectively. We first use the relative total variation (RTV)
approach [15, 19] as an edge-preserving filter [20–25] to estimate I.
We then consider a modified Retinex model as the formation of Ain:
Ain = I ◦ eR (where e is the Euler number). Thus, the definition of
the reflectance becomes

R = ln(Ain � I). (4)

Eq. 4 calculates R in the logarithmic domain. It reveals much richer
objectness information hidden in the dark areas because logarithmic
scaling magnifies the difference between small quantities, as shown
in Figs. 3a and 3f.

Let R = {r(q)}, where r(q) is the reflectance value of the pixel
q ∈ Ain. We calculate the 2D histogram values by

p(ci,j) =

∑
q∈Ain

∑
q′∈N (q) |r(q)− r(q

′)|δa(q),iδa(q′),j∑
q∈Ain

∑
q′∈N (q) |r(q)− r(q′)|

, (5)

whereN (q) is a 7×7 window centered on q according to CVC, and
δ·,· is the Kronecker delta. In this study, it is assumed that p(ci,j) =
p(cj,i) and p(ci,i) = 0 for all i, j ∈ [0,K).

Recall that p(ci,j) needs to be defined in such a way that it is
positively correlated with the requirement of CE between i and j
(Section 2.2). Eq. 5 satisfies this condition exactly; the 2D histogram
values capture the local pixel value differences in reflectance and are
sensitive to the presence of meaningful objects hidden in the dark.
As shown in Fig. 3f, most large differences in reflectance are present
in the foreground objects, e.g., the plants in the center and on the
right and the ColorChecker. These objects obviously require greater
brightness and contrast (high CE requirement) than the background.

Table 1. Quantitative assessment. For the first four metrics, higher
statistics indicate better quality, while LOE is the opposite. The best
statistics per column are shown in bold.

Approach DE EME PD PCQI LOE

No Enhancement 7.17 15.7 27.9 1.00 0

LIME [15] 7.08 13.0 27.6 0.88 156.5
NPIE [16] 7.33 17.4 27.8 0.99 98.9
LECARM [17] 7.11 12.2 25.0 0.90 299.9

KIND [26] 7.02 11.7 22.5 0.87 155.4

CVC [2] 7.49 23.5 32.3 1.06 0
RG-CACHE [7] 7.64 26.0 37.6 1.02 0
? ROPE 7.62 32.3 40.1 1.04 0

Conversely, the reflectance values of the background, where contrast
is of less importance (low CE requirement), are rather smooth. Once
the 2D histogram is constructed, it is substituted into Eq. 2 to itera-
tively calculate the 1D histogram. The input image is then enhanced
by HE as described in Section 2.1.

Fig. 3a shows an example of input image Ain. Figs. 3b–3e show
the 2D/1D histograms and the intensity mapping function T obtained
using CVC, PE, and ROPE (PE indicates our approach proposed in
Section 2.2, but with the 2D histogram of CVC used). Compared to
CVC, ROPE has more emphasis on darker pixels, especially for im-
portant objects, thanks to the incorporation of reflectance. As shown
in Fig. 3g, CVC made no significant changes to the input, whereas
PE improved the visibility of image detail, thereby demonstrating
the effectiveness of Eq. 2. By harnessing the reflectance effectively,
ROPE further boosted brightness and contrast for the most satisfying
image enhancement.

3. EXPERIMENTS

In Section 2.3, we compared ROPE to CVC [2] and RG-CACHE [7].
In this section, we mainly compare ROPE with four state-of-the-art
approaches: LIME [15], NPIE [16], LECARM [17], and KIND [26].
The first three are based on the Retinex model; the last one is based
on deep learning. All these approaches were evaluated using 578 im-
ages from four datasets: LIME [15], USC-SIPI [27], BSDS500 [28],
and VONIKAKIS [29]. The size of the local window used in ROPE
was set to 7× 7, and the maximum number of iterations τ was set to
two.

3.1. Qualitative Assessment

The enhanced images obtained with the compared approaches are
shown in Fig. 4. KIND uses CNNs for image enhancement, but in a
broader sense, it is also based on the Retinex model and so has sim-
ilar performance to LIME, NPIE, and LECARM. Two common dis-
advantages of the four approaches are 1) a tendency to over-amplify
brightness (first row) and 2) excessive saturation if color distortion
was previously hidden in the dark areas of the input (second row).
In comparison, ROPE does not suffer from these problems. The pre-
vious approaches essentially excel at enhancing low-light images,
but there are exceptions, as shown in the third row. In this exam-
ple, ROPE provided the most pleasant brightness, especially for the
flowers in the center. All of these examples demonstrate the much
greater adaptability and consistency of ROPE; our approach is capa-
ble of improving brightness sufficiently for dark images while avoid-
ing excessive enhancement for normal-light images.



(a) Input (b) LIME [15] (c) NPIE [16] (d) LECARM [17] (e) KIND [26] (f) ROPE

(g) Input (h) LIME [15] (i) NPIE [16] (j) LECARM [17] (k) KIND [26] (l) ROPE

(m) Input (n) LIME [15] (o) NPIE [16] (p) LECARM [17] (q) KIND [26] (r) ROPE

(s) Input (t) LIME [15] (u) NPIE [16] (v) LECARM [17] (w) KIND [26] (x) ROPE

Fig. 4. Comparison of ROPE with state-of-the-art image enhancement (see supplemental material [30] for more examples). Images are from
LIME [15], USC-SIPI [27], BSDS500 [28], and VONIKAKIS [29].

3.2. Quantitative Assessment

We objectively evaluated the image enhancement approaches using
five metrics: discrete entropy (DE), EME, PD, and PCQI for contrast
enhancement and LOE for naturalness. DE measures the amount of
information in an image. EME [31] measures the average local con-
trast in an image. PD [32] measures the average intensity difference
of all pixel pairs in an image. PCQI [33] measures the distortions of
contrast strength and structure between input and output. LOE [13]
measures the difference in lightness order between the input and en-
hanced images. The lightness order means the relative order of the
intensity values of two pixels. For DE, EME, PD, and PCQI, higher
statistics indicate better quality, while LOE is the opposite.

Table 1 shows the statistics averaged over 500 test images of
BSDS500. Let us first focus on the contrast enhancement metrics.
Since CVC, RG-CACHE, and ROPE are based on HE, they could
maximize the range of intensity values and so achieved the highest
scores. ROPE showed excellent contrast improvement capabilities,
taking first place in EME and PD and second place in DE and PCQI.
In comparison, none of the four approaches compared in Section 3.1
showed good performance.

In terms of image naturalness, all the approaches based on HE
obtained the best LOE scores. These approaches have an inherent
monotonicity constraint on the intensity mapping function T , so that
the contrast enhancement does not change the order of intensity val-
ues in all pixels. In comparison, the approaches based on the Retinex
model have poorer scores because they alter or eliminate the illumi-
nation component of the image, which results in a large variation in
the lightness order.

Computational Complexity. Consider the processing of a grayscale
image Ain withH×W pixels andK possible intensity values. The
complexity of the reflectance estimation based on RTV [15, 19] is
O(HW ), which is the same as in LIME. The complexity of the 2D
histogram construction (Eq. 5) isO(w2HW ), wherew2 = 72 is the
local window size. The 1D histogram construction (Eq. 2) requires
complexity O(K(K2 − 1)/6). Although it appears to be compu-
tationally intensive, the processing time can be greatly reduced by
exploiting convolutional operations. Applying the intensity mapping
function T to Ain finally takes a complexity of O(HW ). Given a
color image, the complexities are the same as those described above,
since ROPE is only applied to its intensity channel (Section 2.1).

4. CONCLUSION

In this study, a novel image enhancement approach called ROPE is
proposed. In this approach, an image is decomposed into illumina-
tion and reflectance components. The local pixel value differences in
reflectance are embedded in a 2D histogram that captures the prob-
ability of intensity co-occurrence. ROPE derives a 1D histogram
by marginalizing over the 2D histogram, assuming that intensity oc-
currence and co-occurrence are dependent on each other. Finally, an
intensity mapping function is derived by HE for image enhancement.
Evaluated on more than 500 images, ROPE surpassed state-of-the-
art image enhancement approaches in both qualitative and quantita-
tive terms. It was able to provide sufficient brightness improvement
for low-light images while adaptively avoiding excessive enhance-
ment for normal-light images.
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