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ABSTRACT
In this paper, we propose a novel conditional convolution
network, named location-variable convolution, to model the
dependencies of the waveform sequence. Different from
the use of unified convolution kernels in WaveNet to cap-
ture the dependencies of arbitrary waveform, the location-
variable convolution uses convolution kernels with different
coefficients to perform convolution operations on different
waveform intervals, where the coefficients of kernels is pre-
dicted according to conditioning acoustic features, such as
Mel-spectrograms. Based on location-variable convolutions,
we design LVCNet for waveform generation, and apply it in
Parallel WaveGAN to design more efficient vocoder. Experi-
ments on the LJSpeech dataset show that our proposed model
achieves a four-fold increase in synthesis speed compared to
the original Parallel WaveGAN without any degradation in
sound quality, which verifies the effectiveness of location-
variable convolutions.

Index Terms— speech synthesis, waveform generation,
vocoder, location-variable convolution

1. INTRODUCTION

In rencet years, deep generative models have witnessed ex-
traordinary success in waveform generation, which promotes
the development of speech synthesis systems with human-
parity sounding. Early researches on autoregressive model
in waveform synthesis, such as WaveNet [1] and WaveRNN
[2], have shown much superior performance over traditional
parameters vocoders. However, low inference efficiency of
autoregressive neural network limits its application in real-
time scenarios.

In order to address the limitation and improve the gen-
eration speed, many non-autoregressive models have been
studied to generate waveforms in parallel. One family relies
on knowledge distillation, including Parallel WaveNet [3]
and Clarinet [4], where an parallel feed-forward network is
distilled from an autoregressive WaveNet model based on
the inverse auto-regressive flows (IAF) [5]. Although the
IAF models is capable of generating high-fidelity speech in
real time, the requirement for a well-trained teacher model
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and the intractable density distillation lead to a complicated
model training process. The other family is flow-based gen-
eration models, including WaveGlow [6] and WaveFlow [7].
They are implemented by a invertible network and trained
using only a single likelihood loss function on the training
data. While inference is fast on high-performance GPU,
the large size of mode limits their application in memory-
constrained scenarios. Meanwhile, as a family of generation
models, Generative Adversarial Network (GAN) [8] is also
applied in waveform generation, such as MelGAN [9], Paral-
lel WaveGAN [10] and Multi-Band MelGAN [11], in which a
generator is designed to produce samples as close as possible
to real speech, and a discriminator is implemented to distin-
guish generated speech from real speech. They have a very
small amount of parameters, achieve a synthesis speech far
exceeding real-time. Impressively, the Multi-band MelGAN
[11] runs at more than 10x faster than real-time on CPU. In
addition, WaveGrad [12] and DiffWave [13] apply diffusion
probabilistic models [14] for waveform generation, which
converts the white noise signal into structured waveform in
an interative manner.

These models are almost implemented by an wavenet-like
network, in which the dilated causal convolution is applied
to capture the long-term dependencies of waveform, and the
mel-spectrum is used as the local conditional input for the
gated activation unit. In order to efficiently capture time-
dependent features, a large number of convolution kernels are
required in wavenet-like network. In this work, we propose
the location-variable convolution to model time-dependent
features more efficiently. In detail, the location-variable con-
volution uses convolution kernels with different coefficients
to perform convolution operations on different waveform
intervals, where the coefficients of kernels is predicted by
a kernel predictor according to conditioning acoustic fea-
tures, such as mel-spectrograms. Based on location-variable
convolutions, we design LVCNet for waveform generation,
and apply it in Parallel WaveGAN to achieve more efficient
vocoder. Experiments on the LJSpeech dataset [15] show that
our proposed model achieves a four-fold increase in synthesis
speed without any degradation in sound quality. 1

And the main contributions of our works as follow:
1Audio samples in https://github.com/ZENGZHEN-TTS/

LVCNet
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• A novel convolution method, named location-variable
convolution, is proposed to efficiently model the time-
dependent features, which uses different convolution
kernels to perform convolution operations on different
waveform intervals;

• Based on location-variable convolutions, we design a
network for waveform generation, named LVCNet, and
apply it in Parallel WaveGAN to achieve more efficient
vocoder;

• A comparative experiment was conducted to demon-
strate the effectiveness of the location-variable convo-
lutions in waveform generation.

2. PROPOSED METHODS

In order to model the long-term dependencies of waveforms
more efficiently, we design a novel convolution network,
named location-variable convolution, which is applied to the
Parallel WaveGAN to verify its performance. The design
details are described in the section.

2.1. Location-Variable Convolution

In the traditional linear prediciton vocoder [16], a simple all-
pole linear filter is used to generate waveform in autoregres-
sive way, of which the linear prediction coefficients is calcu-
lated according to the acoustic features. This process is simi-
lar to the autoregressive wavenet vocoder, except that the co-
efficients of the linear predictor is variable for different frames
while the coefficients of convolution kernels in wavenet is the
same in all frames. Inspired by this, we try to design a novel
convolution network with variable convolution kernel coeffi-
cients in order to improve the ability to model long-term de-
pendencies for waveform generation.

Define the input sequence to the convolution as x =
{x1, x2, . . . , xn}, and define the local conditioning sequence
as h = {h1, h2, . . . , hm}. An element in the local condition-
ing sequence is associated with a continuous interval in the
input sequence. In order to effectively use the local correla-
tion to model the feature of the input sequence, the location-
variable convolution uses a novel convolution method, where
different intervals in the input sequence use different con-
volution kernels to implement the convolution operation. In
detail, a kernel predictor is designed to predict multiple sets
of convolution kernels according to the local conditioning
sequence. Each element in the local conditioning sequence
corresponds to a set of convolution kernels, which is used to
perform convolution operations on the associated intervals
in the input sequence. In other words, elements in different
intervals of the input sequence use their related and corre-
sponding convolution kernels to extract features. And the
output sequence is spliced by the convolution results on each
interval.
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Fig. 1. An example of convolution process in the location-
variable convolution. According to the conditioning se-
quence, the kernel predictor generates multiple sets of convo-
lution kernels, which are used to perform convolution opera-
tions on the associated intervals in the input sequence. Each
element in the conditioning sequence corresponds to 4 ele-
ments in the input sequence.

Similar to WaveNet, the gated activation unit is also ap-
plied, and the local condition convolution can be expressed
as

{x(i)}m = split(x) (1)

{W f
(i),W

g
(i)}m = Kernel Predictor(h) (2)

z(i) = tanh(W f
(i) ∗ x(i))� σ(W g

(i) ∗ x(i)) (3)

z = concat(z(i)) (4)

where x(i) denotes the intervals of the input sequence associ-
ated with hi, W

f
(i) and W g

(i) denote the filter and gate con-
volution kernels for x(i).

For a more visual explanation, Figure 1 shows an exam-
ple of the location-variable convolution. In our opinion, since
location-variable convolutions can generate different kernels
for different conditioning sequences, it has more powerful
capability of modeling the long-term dependency than tradi-
tional convolutional network. We also experimentally analyze
its performance for waveform generation in next section.

2.2. LVCNet

By stacking multiple layers of location-variable convolutions
with different dilations, we design the LVCNet for waveform
generation, as shown in Figure 2(a). The LVCNet is com-
posed of multiple LVCNet blocks, and each LVCNet block
contains multiple location-variable convolution (LVC) layers
with inscreasing factorial dilation coefficients to improve the
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(a) Architecture of LVCNet
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(b) Architecture of Parallel WaveGAN with LVCNet

Fig. 2. (a) The architecture of LVCNet, which is composed of multiple LVCNet blocks, and each LVCNet block contains
multiple location-variable convolution (LVC) layers with inscreasing factorial dilation coefficients to improve the receptive
field. (b) The architecture of Parallel WaveGAN with LVCNet. The generator is implemented using LVCNet.

receptive field. A linear layer is applied on the input and out-
put sides of the network to achieve channel conversion. The
residual connection is deployed in each LVCNet block instead
of each LVC layer, which can achieve more stable and satis-
factory results according to our experimental analysis. In ad-
dition, the conditioning sequence is input into the kernel pre-
dictor to predict coefficients of convolution kernels in each
LVC layer. The kernel predictor consists of multiple residual
linear layer with leaky ReLU activation function (α = 0.1),
of which the output channel is determined by the amount of
convolution kernel coefficients to be predicted.

2.3. Parallel WaveGAN with LVCNet

In order to verify the performance of location-variable convo-
lutions, we choose Parallel WaveGAN as the baseline model,
and use the LVCNet to implement the network of the gener-
ator, as shown in Figure 2(b). The generator is also condi-
tioned on the mel-sepctrum, and transforms the input noise to
the output waveform. For a fair comparison, the discriminator
of our model maintains the same structure as that of Parallel
WaveGAN, and the same loss function and training strategy
as Parallel WaveGAN are used to train our model.

Note that, the design of the kernel predictor is based on the
correspondence between the mel-spectrum and the waveform.
A 1D convolution with 5 of kernel size and zero of padding
is firstly used to adjust the alignment between the condition-
ing mel-spectrum sequence and the input waveform sequence,
and subsequent multiple stacked 1×1 convolutional layers to
output convolution kernels of the location-variable convolu-
tions. In addition, we remove the residual connection of the
first LVCNet block in the generator for better model perfor-
mance.

3. EXPERIMENTS

3.1. Experimental setup

3.1.1. Database

We train our model on the LJSpeech dataset [15]. The en-
tire dataset is randomly divided into 3 sets: 12,600 utterances
for training, 400 utterances for validation, and 100 utterances
for test. The sample rate of audio is set to 22,050 Hz. The
mel-spectrograms are computed through a short-time Fourier
transform with Hann windowing, where 1024 for FFT size,
1024 for window size and 256 for hop size. The STFT mag-
nitude is transformed to the mel scale using 80 channel mel
filter bank spanning 80 Hz to 7.6 kHz.

3.1.2. Model Details

In our proposed model, the generator is implemented by the
LVCNet, and the network structure of the discriminator is
consistent with that in original Parallel WaveGAN. The gener-
ator is composed of three LVCNet blocks, where each blocks
contains 10 LVC layers, and the residual channels is set to 8.
The kernel size of the location-variable convolution is set to
three, and the dilation coefficients is the factorial of 2 in each
LVCNet block. The kernel predictor consists of one 1×5 con-
volutional layer and three 1× 1 residual convolutional layers,
where the hidden residual channel is set to 64. The weight
normalization is applied in all convolutional layer.

We choose Parallel WaveGAN [10] as the baseline model,
and use the same strategy to train our model and baseline
model for a fair comparison. In addition, in order to verify
the efficiency of the location-variable convolution in mod-
eling waveform dependencies, we conduct a set of detailed



comparison experiments. Our proposed model is trained and
compared with the Parallel WaveGAN under different resid-
ual channels (4, 8, 16 for our model and 32, 64, 128 for Par-
allel WaveGAN).

3.2. Results

3.2.1. Evaluation

In order to evaluate the performance of these vocoder, we
use the mel-spectrograms extracted from test utterances as in-
put to obtain synthetic audios, which is rated together with
the ground truth audio (GT) by 20 testers with headphones
in a conventional mean opinion score (MOS) evaluation. At
the same time, the audios generated by Griffin-Lim algorithm
[17] are also rated together.

The scoring results of our proposed model and Parallel
WaveGAN with different residual convolutional channels are
shown in Table 1, where the real-time factor implemented
(RTF) on CPU is also illustrated. We find that our proposed
model achieves almost the same results as Parallel Wave-
GAN, but the inference speed is increased by four times. The
reasan for the speech increase is that small number fo residual
channels greatly reduces the amount of convolution opera-
tions in our model. Meanwhile, our unoptimized model can
synthesizes multiple utterances at approximately 300 MHz on
an NVIDIA V100 GPU, which is much faster than 35 MHz
of Parallel WaveGAN.

In addition, as the residual channels decreases, the rate of
performance degradation of our model is significantly slower
than that of Parallel WaveGAN. In our opinion, even if the
residual channels is very small (such as 4, 8), the convolution
coefficients are adjusted according to mel-spectrums in our
model, which still guarantees effective feature modeling.

3.2.2. Text-to-Speech

To verify the effectiveness of the proposed model as the
vocoder in the TTS framework, we combine it with Trans-
former TTS [18] and AlignTTS [19] for testing. In detail,
according to the texts in the test dataset, Transformer TTS
and AlignTTS predict mel-spectrums respectively, which is
used as the input of our model (with 8 of residual channels)
and Parallel WaveGAN to generate waveforms for MOS
evaluation. The results are shown in Table 2. Compared
with Parallel WaveGAN, our model significantly improves
the speed of speech synthesis without degradation of sound
quality in feed-forward TTS systems.

In our opinion, due to the mutual independence of the
acoustic features (such as mel-specturms), we can use dif-
ference convolution kernels to implement convolution opera-
tions on difference time intervals to obtain more effective fea-
ture modeling capabilities. In this work, we just use the LVC-
Net to design a new generator for waveform generation, and

Table 1. The comparison between our proposed model (LVC-
Net) and Parallel WaveGAN (PWG) with different residual
channels.

Method Size MOS RTF (CPU)

GT 4.56± 0.05 −
Griffin-Lim 3.45± 0.24 −
PWG-32 0.44 M 3.62± 0.23 2.16
PWG-48 0.83 M 4.03± 0.10 3.05
PWG-64 1.35 M 4.15± 0.08 3.58

LVCNet-4 0.47 M 3.96± 0.15 0.53
LVCNet-6 0.84 M 4.09± 0.12 0.62
LVCNet-8 1.34 M 4.15± 0.10 0.73

Table 2. The comparison between our proposed model (LVC-
Net) and Parall WaveGAN (PWG) in TTS systems.

Method MOS Time (s)

GT − −
Transformer + PWG 4.08± 0.14 2.76± 0.94
AlignTTS + PWG 4.07± 0.09 0.09± 0.01

Transformer + LVCNet 4.07± 0.15 2.70± 0.88
AlignTTS + LVCNet 4.09± 0.11 0.06± 0.01

obtain a faster vocoder without degradation of sound qual-
ity. Considering our previous experiments [20], the effective-
ness of the location-variable convolution has been sufficiently
demonstrated, and there is potential for optimization.

4. CONCLUSION

In this work, we propose the location-variable convolution for
time-dependent feature modeling. which uses different ker-
nels to perform convlution operations on different intervals of
input sequence. Based on it, we design LVCNet and imple-
ment it as the generator of Parallel WaveGAN framework to
achieve more efficient waveform generation model. Exper-
iments on LJSpeech dataset show that our proposed model
is four times faster than the base Parallel WaveGAN model
in inferece speed without any degradation in sound quality,
which verifies the effectiveness of the location-variable con-
volution.
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