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ABSTRACT

We investigate a set of techniques for RNN Transducers (RNN-Ts)

that were instrumental in lowering the word error rate on three differ-

ent tasks (Switchboard 300 hours, conversational Spanish 780 hours

and conversational Italian 900 hours). The techniques pertain to

architectural changes, speaker adaptation, language model fusion,

model combination and general training recipe. First, we introduce

a novel multiplicative integration of the encoder and prediction net-

work vectors in the joint network (as opposed to additive). Second,

we discuss the applicability of i-vector speaker adaptation to RNN-

Ts in conjunction with data perturbation. Third, we explore the ef-

fectiveness of the recently proposed density ratio language model

fusion for these tasks. Last but not least, we describe the other com-

ponents of our training recipe and their effect on recognition perfor-

mance. We report a 5.9% and 12.5% word error rate on the Switch-

board and CallHome test sets of the NIST Hub5 2000 evaluation and

a 12.7% WER on the Mozilla CommonVoice Italian test set.

Index Terms— End-to-end ASR, recurrent neural network

transducer, multiplicative integration

1. INTRODUCTION

End-to-end approaches directly map an acoustic feature sequence

to a sequence of characters or even words without any conditional

independence assumptions. Compared to traditional approaches

which integrate various knowledge sources in a complex search al-

gorithm, end-to-end methods resulted in a dramatic simplification of

both training and decoding pipelines. This led to a rapidly evolving

research landscape in end-to-end modeling for ASR with Recur-

rent Neural Network Transducers (RNN-T) [1] and attention-based

models [2, 3] being the most prominent examples. Attention based

models are excellent at handling non-monotonic alignment problems

such as translation [4], whereas RNN-Ts are an ideal match for the

left-to-right nature of speech [5–17].

Nowadays, end-to-end models can reach unprecedented levels

of speech recognition performance in spite of, or maybe because

of, the significantly simpler implementations. It has been shown

that, given enough training data, end-to-end models are clearly able

to outperform traditional approaches [18]. Nevertheless, data spar-

sity and overfitting are inherent problems for any direct sequence-

to-sequence model and various approaches have been proposed to

introduce useful variances and mitigate these issues [19–23].

After a short overview of RNN-T sequence modeling (section 2),

section 3 investigates an architectural change and section 4 presents

efficient training and decoding recipes for such models. The pro-

posed techniques are then evaluated on three different languages

(section 5), before conclusions are drawn (section 6). As will be

shown, the consistent application of these methods will result in re-

markable end-to-end model performance, even if only a few hundred

hours of training data are available.

2. RNN-T MODEL DESCRIPTION

Borrowing some notations from [1], RNN-Ts model the conditional

distribution p(y|x) of an output sequence y = (y1, . . . , yU ) ∈ Y∗

of length U given an input sequence x = (x1, . . . , xT ) ∈ X ∗ of

length T . The elements of x are typically continuous multidimen-

sional vectors whereas the elements of y belong to an output space

which is typically discrete. p(y|x) is expressed as a sum over all

possible alignments a = (a1, . . . , aT+U ) that are consistent with y:

p(y|x) =
∑

a∈B−1(y)

p(a|x) (1)

The elements of a belong to the augmented vocabulary Y = Y∪{φ}
where φ (called BLANK) denotes the null output. The map-

ping B : Y
∗

→ Y∗ is defined by B(a) = y. For example, if

y = (C,A, T ) and x = (x1, x2, x3, x4) valid alignments include

(φ,C, φ,A, φ, T, φ), (φ, φ, φ, φ, C,A, T ), (C,A, T, φ, φ, φ, φ),
etc. Furthermore, p(a|x) can be factorized as follows:

p(a|x) = p(a|h)
∆
=

T+U
∏

i=1

p(ai|hti ,B(a1, . . . , ai−1)) =

T+U
∏

i=1

p(ai|hti , y0, . . . , yui−1
) =

T+U
∏

i=1

p(ai|hti , gui
) (2)

where: h = (h1, . . . , hT ) = Encoder(x) is an embedding of the

input sequence computed by an encoder network, g = (g1, . . . , gU)
is an embedding of the output sequence computed by a prediction

network via the recursion gu = Prediction(gu−1, yu−1) (with the

convention g0 = 0, y0 = φ), and p(ai|hti , gui
) is the predictive

output distribution over Y computed by a joint network which is

commonly implemented as:

p(·|ht, gu) = softmax[Wouttanh(Wencht+W
predgu+b)] (3)

Wenc ∈ IRJ×E , Wpred ∈ IRJ×P are linear projections that map

ht ∈ IRE and gu ∈ IRP to a joint subspace which, after addition and

tanh, is mapped to the output space via Wout ∈ IR|Y|×J . RNN-Ts

are typically trained to a minimize the negative log-likelihood (NLL)

loss − log p(y|x). From (1), calculating the sum by direct enumer-

ation is intractable because the number of all possible alignments

of length T + U is
∣

∣B−1(y)
∣

∣ =
(

T+U
U

)

= (T+U)!
T !U !

≥
(

1 + T
U

)U

where
(

n
k

)

denotes the binomial coefficient n choose k. Luckily, the

factorization in (2) allows for an efficient forward-backward algo-

rithm with T × U complexity for both loss and gradient computa-

tion [1, 24].
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3. MULTIPLICATIVE INTEGRATION OF ENCODER AND

PREDICTION NETWORK OUTPUTS

Here, we discuss a simple change to the joint network equation (3)

and its implications:

p(·|ht, gu) = softmax[Wouttanh(Wencht⊙W
predgu+b)] (4)

where ⊙ denotes elementwise multiplication (or Hadamard prod-

uct). This modification was inspired by the work of [25] where the

authors use multiplicative integration (MI) in the context of a re-

current neural network for fusing the information from the hidden

state vector and the input vector. The advantages of MI over additive

integration for fusing different information sources have also been

mentioned in [26] and are summarized below.

Higher-order interactions MI allows for second-order interactions

between the elements of ht and gu which facilitates modeling of

more complex dependencies between the acoustic and LM embed-

dings. Importantly, the shift to second order is achieved with no in-

crease in the number of parameters or computational complexity. In

theory, feedforward neural nets with sufficient capacity and training

data are universal function approximators; therefore, a joint network

with (ht, gu) inputs and multiple layers should be optimal. However

the memory requirements are prohibitive because the input tensor

size for such a network is N × T × U × (E + P ) and the mem-

ory for the output tensors is N × T × U ×H × L where N is the

batchsize, H is the number of hidden units and L is the number of

layers. Therefore, for pure training efficiency reasons, we are con-

strained to use shallow (single layer) joint networks, in which case

the functional form of the layer becomes important.

Generalizes additive integration Indeed, when used in conjunction

with biases, the additive terms appear in the expansion

(Wencht + benc)⊙ (Wpredgu + bpred) = W
encht ⊙W

predgu

+benc ⊙W
predgu + bpred ⊙W

encht + benc ⊙ bpred

(5)

Scaling and gating effect By multiplying h̃t := Wencht with

g̃u := Wpredgu, one embedding has a scaling effect on the other

embedding. In particular, unlike for additive interactions, in MI the

gradient with respect to one component is gated by the other com-

ponent and vice versa. Concretely, let us denote by L(x,y; θ) =
− log p(y|x; θ) the NLL loss for one utterance for an RNN-T with

parameters θ. The partial derivatives of the loss with respect to h̃t

and g̃u are:

∂L

∂h̃t

= g̃u ⊙
∂L

∂(h̃t ⊙ g̃u)

∂L

∂g̃u
= h̃t ⊙

∂L

∂(h̃t ⊙ g̃u)
(6)

These arguments suggest that multiplicative integration is a good

candidate for fusing the two different information streams coming

from the encoder and the prediction network. We expect multiplica-

tive RNN-Ts to be, if not better, then at least complementary to ad-

ditive RNN-Ts which should be beneficial for model combination.

4. TRAINING AND DECODING RECIPE

In this section, we discuss some of the techniques that are part of

our RNN-T training and decoding recipe. While none of the tech-

niques presented here are novel, the goal is to show their effec-

tiveness for RNN-Ts in particular. The techniques can be roughly

grouped into: (i) data augmentation/perturbation and model regu-

larization, (ii) speaker adaptation and (iii) external language model

fusion.

Speed and tempo perturbation [19] changes the rate of speech in

the interval [0.9, 1.1] with or without altering the pitch or timbre of

the speaker. This technique generates additional replicas of the train-

ing data depending on the number of speed and tempo perturbation

values.

Sequence noise injection [20] adds, with a given probability, the

downscaled spectra of randomly selected training utterances to the

spectrum of the current training utterance. This technique does not

increase the amount of training data per epoch.

SpecAugment [21] masks the spectrum of a training utterance with

a random number of blocks of random size in both time and fre-

quency.

DropConnect [22] zeros out entries randomly in the LSTM hidden-

to-hidden transition matrices.

Switchout [23] randomly replaces labels in the output sequence with

labels drawn uniformly from the output vocabulary.

I-vector speaker adaptation [27] appends a speaker identity vector

to the input features coming from a given speaker. When used in

conjunction with speed and tempo perturbation, the perturbed audio

recordings of a speaker are considered to be different speakers for

the purpose of universal background model (UBM) training, total

variability matrix training, and i-vector extraction.

Alignment-length synchronous decoding [17] is a beam search

technique with the property that all competing hypotheses within the

beam have the same alignment length. It has been shown to be faster

than time-synchronous search for the same accuracy.

Density ratio (DR) LM fusion [13] is a shallow fusion technique

that combines two language models: an external LM trained on a

target domain corpus and a language model trained on the acoustic

transcripts (source domain) only. The latter is used to subtract the ef-

fect of the intrinsic LM given by the prediction network (idea further

developed in [14]). Decoding using DR fusion is done according to:

y
∗ = argmax

y∈Y∗

{log p(y|x)−µ log psrc(y)+λ log pext(y)+ρ|y|}

(7)

where µ, λ, ρ are the weights corresponding to the source LM psrc,

external LM pext, and label length reward |y|.

5. EXPERIMENTS AND RESULTS

We investigate the effectiveness of the proposed techniques on one

public corpus (English conversational telephone speech 300 hours)

and two internal datasets (Spanish and Italian conversational speech

780 hours and 900 hours, respectively).

5.1. Experiments on Switchboard 300 hours

The first set of experiments was conducted on the Switchboard

speech corpus which contains 300 hours of English telephone con-

versations between two strangers on a preassigned topic. The acous-

tic data segmentation and transcript preparation are done according



to the Kaldi s5c recipe [28]. We report results on the commonly

used Hub5 2000 Switchboard and CallHome test sets as well as

Hub5 2001 and RT’03, which are processed according to the LDC

segmentation and scored using Kaldi scoring for measuring WER.

We extract 40-dimensional speaker independent log-Mel filter-

bank features every 10 ms which are mean and variance normalized

per conversation side. The features are augmented with ∆ and ∆∆
coefficients and every two consecutive frames are stacked and ev-

ery second frame is skipped resulting in 240-dimensional vectors

extracted every 20 ms. These features are augmented with 100-

dimensional i-vectors that are extracted using a 2048 40-dimensional

diagonal covariance Gaussian mixture UBM trained on speaker in-

dependent PLP features transformed with LDA and a semi-tied co-

variance transform.

Speed and tempo perturbation is applied to each conversation

side with values in {0.9, 1.1} for both speed and tempo separately

resulting in 4 additional training data replicas which, together with

the original data, amounts to 1500 hours of training data per epoch.

For sequence noise injection, we add, with probability 0.8, to the

spectrum of each training utterance the spectrum of one random ut-

terance of similar length scaled by a factor of 0.4. For SpecAugment

we used the settings published in [21]. Lastly, in label switchout,

for a sequence of length U , we first sample n̂ ∈ {0, . . . , U} with

p(n̂) ∝ e−n̂/τ and then we replace, with probability n̂/U , the true

characters with random characters for each position in the sequence.

We set the temperature to τ = 10 in our experiments.

The architecture of the trained models is as follows. The encoder

contains 6 bidirectional LSTM layers with 640 cells per layer per

direction and is initialized with a network trained with CTC based

on [29] similar to [5, 6, 8, 15]. The prediction network is a single

unidirectional LSTM layer with only 768 cells (this size has been

found to be optimal after external LM fusion). The joint network

projects the 1280-dimensional stacked encoder vectors from the last

layer and the 768-dimensional prediction net embedding to 256 di-

mensions and combines the projected vectors using either + or ⊙.

After the application of hyperbolic tangent, the output is projected to

46 logits followed by a softmax layer corresponding to 45 characters

plus BLANK. All models have 57M parameters.

Optimizer LR policy Batch size SWB CH

Momentum SGD const+decay 256 9.6 17.5

Momentum SGD const+decay 64 9.4 17.5

AdamW const+decay 256 9.4 17.8

AdamW const+decay 64 8.5 16.7

AdamW OneCycleLR 64 8.1 16.5

Table 1. Effect of optimizer, batch size and learning rate schedule

on recognition performance for Switchboard 300 hours (Hub5’00

test set).

The models were trained in Pytorch on V100 GPUs for 20

epochs using SGD variants that differ in optimizer, learning rate

schedule and batch size. In Table 1 we look at the effect on perfor-

mance of changing the learning strategy. For momentum SGD, the

learning rate was set to 0.01 and decays geometrically by a factor of

0.7 every epoch after epoch 10. For AdamW, the maximum learning

rate is set to 5e-4 and the OneCycleLR policy [30] consists in a lin-

ear warmup phase from 5e-5 to 5e-4 over the first 6 epochs followed

by a linear annealing phase to 0 for the next 14 epochs. As can be

seen, AdamW with OneCycleLR scheduling and a batch size of 64

appears to be optimal in this experiment.

Model
No ext LM With ext LM

SWB CH Avg SWB CH Avg

Baseline 7.9 15.7 11.8 6.4 13.4 9.9

No Switchout 8.1 15.5 11.8 6.3 13.1 9.7

No Seq. noise 8.4 16.1 12.2 6.6 13.8 10.2

No i-vectors 8.1 16.0 12.0 6.6 13.9 10.3

No CTC init. 8.3 16.3 12.3 6.6 14.1 10.4

No Density ratio 7.9 15.7 11.8 6.9 14.4 10.7

No DropConnect 8.2 16.7 12.5 7.0 14.8 10.9

No SpecAugment 8.8 18.1 13.5 6.9 15.5 11.2

No Speed/tempo 10.0 18.3 14.2 7.6 15.2 11.4

Table 2. Ablation study on Switchboard 300 hours (Hub5’00 test

set).

Next, we perform an ablation study on the final recipe to tease

out the importance of the individual components. We show results

in Table 2 for models with multiplicative integration with and with-

out external language model fusion. The source LM is a one-layer

LSTM with 768 cells (5M parameters) trained on the Switchboard

300 hours character-level transcripts (15.4M tokens) whereas the tar-

get LM is a two-layer LSTM with 2048 cells per layer (84M param-

eters) trained on the Switchboard+Fisher character-level transcripts

(126M tokens).

Surprisingly, deactivating switchout from the final recipe ac-

tually improves recognition performance after external LM fusion,

which was not the case in prior experiments where this technique

was marginally helpful. Also, another unexpected finding was the

large gain due to density ratio LM fusion. We attribute this to op-

timizing the other elements of the training recipe around this tech-

nique (e.g. reducing the size of the prediction network).

ext
Model

Hub5’00 Hub5’01 RT’03

LM swb ch swb s2p3 s2p4 swb fsh

no

+ 8.0 15.6 8.7 11.4 16.3 18.0 11.4

⊙ 8.1 15.5 8.5 11.7 15.9 18.5 11.8

Comb. 7.5 14.3 7.9 10.8 15.2 17.1 10.7

yes

+ 6.4 13.4 7.0 9.2 13.4 15.0 9.2

⊙ 6.3 13.1 7.1 9.4 13.6 15.4 9.5

Comb. 5.9 12.5 6.6 8.6 12.6 14.1 8.6

Table 3. Recognition results for additive, multiplicative and com-

bined RNN-Ts on Switchboard 300 hours (Hub5’00, Hub5’01,

RT’03 test sets).

In the next experiment, we compare RNN-Ts with additive ver-

sus multiplicative integration in the joint network. Based on the pre-

vious findings, we train these models without switchout. We also

perform log-linear model combination with density ratio LM fusion

according to:

y
∗ = argmax

y∈H+(x)∪H⊙(x)

{α log p(y|x; θ+) + β log p(y|x; θ⊙)

− µ log psrc(y) + λ log pext(y) + ρ|y|}
(8)

where H+(x),H⊙(x) are the n-best hypotheses generated by the

additive and multiplicative RNN-Ts. Concretely, we rescore the

union of the top 32 hypotheses from each model with α = β = µ =



0.5, λ = 0.7 and ρ = 0.2. The results from Table 3 show that mul-

tiplicative RNN-Ts are comparable on Hub5’00 and Hub5’01 but

slightly worse on RT’03 and that model combination significantly

improves the recognition performance across all test sets.

For comparison, we include in Table 4 the top performing sin-

gle model systems from the literature on the Switchboard 300 hours

corpus. The numbers should be compared with 6.3/13.1 (row 5 from

Table 3). As can be seen, the proposed modeling techniques exhibit

excellent performance on this task.

System Type ext. LM SWB CH

Park et al.’19 [21] Att. enc-dec LSTM 6.8 14.1

Irie et al.’19 [31] Hybrid Transf. 6.7 12.9

Hadian et al.’18 [32] LF-MMI RNN 7.5 14.6

Tüske et al.’20 [33] Att. enc-dec LSTM 6.4 12.5

Table 4. Single model performance for existing systems on Switch-

board 300 hours (Hub5’00 test set).

5.2. Experiments on conversational Spanish 780 hours

We also investigated the effectiveness of the proposed techniques on

an internal dataset which consists of 780 hours of Spanish call cen-

ter data collected using a balanced distribution of Castilian and other

Central and South American dialects from roughly 4000 speakers.

The test set on which we report results comes from the call cen-

ter domain and contains 4 hours of speech, 113 speakers and 31.6k

words.

The model architecture, training and decoding recipes are

identical to the ones from the previous subsection (except for a

40-character output layer) with the difference that we do not use

i-vector speaker adaptation because of the small amount of data per

speaker. The external language model is a two layer LSTM with

2048 cells per layer (84M parameters) trained on the character-level

acoustic transcripts (36M characters) as well as additional text data

from the customer care domain (173M characters). The source LM

is a single-layer LSTM with 1024 cells (8.7M parameters).

Model/technique Training data WER

Initial experiment 250 h 34.8

+ DropConnect+seq. noise 250 h 27.6

+ Speed/tempo 780 h 25.0

+ CTC encoder pretraining 780 h 23.6

+ Multiplicative integration 780 h 22.7

+ SpecAugment 780 h 21.9

+ AdamW+OneCycleLR 780 h 20.8

+ Shallow LM fusion 780 h 20.3

+ Density ratio LM fusion 780 h 20.0

Table 5. Cumulative effect of proposed techniques on conversational

Spanish 780 hours (internal test set).

In Table 5, we look at the impact of the various techniques on

word error rate for bidirectional RNN-Ts. The first 4 models have

additive integration and the first 6 models are trained with momen-

tum SGD and a constant+decay learning rate schedule for 20 epochs.

Unlike in the previous experiments, here we observe a significant

gain from multiplicative integration (0.9% absolute) and a smaller

gain from density ratio fusion (0.3% absolute).

5.3. Experiments on conversational Italian 900 hours

The last set of experiments was conducted on an internal Italian cor-

pus of conversational speech that was collected using scripted di-

alogs from several domains such as banking, insurance, telco, retail

to name a few. The data has a balanced demographic and dialectal

distribution with a large fraction of the speakers speaking standard

dialect (as spoken in the capital or news broadcasts). We report re-

sults on the Mozilla CommonVoice1 Italian test set which has 1.2

hours of audio, 764 utterances and 6.6K reference words.

Similar to the Spanish setup, we trained character-level RNN-

Ts (53 outputs) without i-vector speaker adaptation using the recipe

described in section 4 with specifics from subsection 5.1. In addi-

tion, we also train RNN-Ts with unidirectional LSTM encoders with

6 layers and 1024 cells per layer on stacked log-Mel features aug-

mented with ∆,∆∆ with 5 frames lookahead as proposed in [10].

The language model configuration for density ratio fusion is as fol-

lows: the source LM has one LSTM layer with 1024 units (8.7M

parameters) and is trained on the character-level acoustic transcripts

(41.7M characters) whereas the external LM is a two layer 1024

cells/layer LSTM (21.3M parameters) trained on the acoustic tran-

scripts and 10% of Italian Wikipedia data (306M characters).

In Table 6, we compare additive versus multiplicative models

with bidirectional and unidirectional encoders with and without ex-

ternal LM fusion (regular and density ratio). Based on these re-

sults, three observations can be made. First, multiplicative inte-

gration significantly outperforms the additive counterpart for uni-

directional models and after shallow LM fusion (for both). Second,

there is a severe degradation in recognition performance from us-

ing unidirectional encoders which can be mitigated with techniques

from [12, 34]. Third, density ratio LM fusion significantly outper-

forms regular shallow fusion which we attribute to the mismatched

training and testing conditions.

Bidirectional Unidirectional

+ ⊙ + ⊙
No external LM 17.8 17.6 28.0 26.2

Shallow fusion 15.2 13.9 22.9 21.4

Density ratio fusion 13.6 12.7 20.9 18.6

Table 6. Various comparisons on conversational Italian 900 hours

(Mozilla CommonVoice test set).

6. CONCLUSION

The contribution of this paper is twofold. First, we have introduced

a simple yet effective modification of the joint network whereby we

combine the encoder and prediction network embeddings using mul-

tiplicative integration instead of additive. MI outperforms additive

integration on two out of three tasks and shows good model comple-

mentarity on the Switchboard 300 hours corpus. Second, we have

shown that careful choice of optimizer and learning rate scheduling,

data augmentation/perturbation and model regularization, speaker

adaptation, external language model fusion, and model combina-

tion can lead to excellent recognition performance when applied

to models with a very simple architecture and character outputs.

Future work will look at alternative neural transducer architectures

(e.g. [35]) and training criteria (e.g. [36]) and attempt to simplify the

training recipe without sacrificing recognition performance.

1https://commonvoice.mozilla.org
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