
META-COGNITION-BASED SIMPLE AND EFFECTIVE APPROACH TO OBJECT
DETECTION

Sannidhi P Kumar? Chandan Gautam? Suresh Sundaram?

? WIRIN Autonomous Systems and Robotics Lab
Department of Aerospace Engineering

Indian Institute of Science, Bangalore, Karnataka

ABSTRACT

Recently, many researchers have attempted to improve deep
learning-based object detection models, both in terms of ac-
curacy and operational speeds. However, frequently, there
is a trade-off between speed and accuracy of such models,
which encumbers their use in practical applications such as
autonomous navigation. In this paper, we explore a meta-
cognitive learning strategy for object detection to improve
generalization ability while at the same time maintaining de-
tection speed. The meta-cognitive method selectively samples
the object instances in the training dataset to reduce overfit-
ting. We use YOLO v3 Tiny as a base model for the work
and evaluate the performance using the MS COCO dataset.
The experimental results indicate an improvement in absolute
precision of 2.6% (minimum), and 4.4% (maximum), with no
overhead to inference time.

Index Terms— Object Detection, Meta-cognition, YOLO
v3 Tiny, Deep Learning

1. INTRODUCTION

Object detection is one of the fundamental computer vision
tasks used in a plethora of applications such as autonomous
navigation, surveillance and security, and facial detection.
Such widespread use necessitates the need to build accurate
real-time object detection networks. Object detection com-
bines the tasks of image classification and object localization.
Thus, an object detector’s task is to return the bounding box
coordinates of the objects of interest in an image and assign
them class labels. Modern deep learning-based object detec-
tors comprise two parts, a backbone pre-trained on ImageNet
and a detection head. Several backbones, such as [1, 2, 3, 4, 5]
have been proposed. Detection heads are classified into two
types, two-stage object detectors, and one-stage object de-
tectors. Two-stage detectors, such as Region-based Convolu-
tional Neural Networks (R-CNN) [6], Fast R-CNN [7], Faster
R-CNN [8], and Region-based Fully Convolutional Networks
[9], generate region proposals in the first stage. In the second

We would like to thank WIRIN for funding this work.

stage, feature extraction from these region proposals is fol-
lowed by object classification and bounding box regression.
These detectors have achieved high accuracy rates but low op-
erational speeds. To address this issue, single-stage detectors
have been proposed. These detectors skip the region proposal
stage and make bounding box predictions directly from the
input image. As a result, these models are faster but not as
accurate as two-stage detectors. Among the single-stage de-
tectors, Single Shot MultiBox Detector (SSD) [10], the You
Only Look Once (YOLO) series of networks, and RetinaNet
[11] are the most representative. SSD directly produces class
predictions and adjustments to default bounding boxes of
different aspect ratios and scales for each location in a fea-
ture map. YOLO [12] frames object detection as a regression
problem wherein network evaluation is performed just once to
predict the bounding boxes and class probabilities. YOLO v2
[13] improves the Average Precision (AP) of YOLO signif-
icantly by introducing batch normalization for convolutional
layers, a high-resolution classifier, and dimension clusters.
YOLO v3 [14] proposes a Darknet-53 architecture that fur-
ther improves upon the performance of YOLO v2. YOLO v4
[15], being the latest addition to the family, introduces new
features such as weighted residual connections, mosaic data
augmentation, cross mini-batch normalization, cross-stage
partial connections, self adversarial training, and Complete
Intersection over Union (CIoU) loss.

Variants of the above described YOLO series have been
released for constrained environments that meet real-time re-
quirements. One such model is YOLO v3 Tiny, which clocks
at 220 FPS, but gives an AP of 33.1%. The objective is to
improve accuracy while preserving the detection speed. It
is recently shown in cognitive psychology that human meta-
cognition learning principles help achieve better generaliza-
tion ability. Over the last decade, these principles have been
used across various disciplines such as disease classification,
science education, human emotion recognition, and search
algorithms for optimization problems. Various researchers
have amalgamated the concept of meta-cognition with neu-
ral networks in the past [16, 17, 18, 19]. Such neural net-
works have two components, cognitive and meta-cognitive.

ar
X

iv
:2

01
2.

01
20

1v
1 

 [
cs

.C
V

] 
 2

 D
ec

 2
02

0



The latter component scrutinizes the former’s knowledge and
devises efficient learning strategies, namely the sample delete,
neuron growth, parameter update, and sample reserve strate-
gies to improve its learning ability. [16] implements the sam-
ple delete strategy for a classification problem as follows -
when the predicted class label of the new training sample is
the same as the actual class label, and the confidence level
(estimated posterior probability) is greater than the expected
value, the new training sample does not provide additional
information to the classifier. It is deleted from the training
pipeline without being used in the learning process. For a re-
gression problem as in [17], if the predicted error for the cur-
rent sample is less than the delete threshold, then the knowl-
edge content of the sample is similar to the knowledge present
in the network. Thus, the sample is removed from the training
sequence.

This paper has explored a sample selection strategy, which
focuses on what object instances in each training image can
be learned for object detection. The proposed method is
based on the self-regulative learning process, which selects
appropriate learning samples based on current knowledge,
and the knowledge present in the training batch. The self-
regulative learning process is evaluated using YOLO v3 Tiny
architecture for object detection. The performance of the
proposed meta-cognitive YOLO v3 Tiny is evaluated using
the MS COCO dataset [20] and compared against the perfor-
mance of the baseline model. The results clearly highlight
that meta-cognition helps achieve better performance without
increasing the computational complexity of the model.

The rest of the paper is organized as follows. Section 2
discusses our baseline model. Section 3 describes the pro-
posed method. Section 4 contains the experimental setup and
performance evaluations. Finally, we conclude our paper in
section 5.

2. BACKGROUND

This section discusses the details of the baseline model. The
architecture of YOLO v3 Tiny broadly consists of 13 convolu-
tional layers: feature extractor (seven layers) and feature de-
tector (six layers). The backbone of YOLO v3 Tiny performs
feature extraction, where each convolutional layer is followed
by a batch normalization layer and Leaky ReLU activation.
The feature extractor uses max-pooling layers to reduce the
dimensionality of these convolutional layers. The network’s
backbone is followed by the detection head, which makes de-
tections at two scales, i.e., output images of sizes 13× 13 and
26 × 26 for an input image of resolution 416. Each grid cell
of an output image predicts three bounding boxes. The first
output image of size 13 × 13, which detects large objects, is
obtained at the tenth convolutional layer of the network. The
feature map from the sixth pooling layer is upsampled and
then concatenated with the feature map obtained at the fifth
convolutional layer of the network. The concatenated feature

map is then passed through the next two convolutional lay-
ers to give rise to the 26 × 26 image to detect medium sized
objects. YOLO v3 Tiny performs detection based on these at-
tributes, namely the class labels, object confidence score, and
bounding box coordinates.

3. META-COGNITIVE YOLO V3 TINY

In this section, the proposed method Meta-Cognitive YOLO
v3 Tiny (MC-YOLOv3T) is discussed in detail. In MC-
YOLOv3T, we explore a sample selection strategy of meta-
cognitive learning in the training phase. Initially, we pre-
process the training images by performing data augmentation
and resizing. The pre-processed images are then passed to the
network to obtain the predicted bounding boxes, following
which we apply meta-cognitive thresholding to the class pre-
dictions of each bounding box. Meta-cognitive thresholding
selectively samples the object instances in the training image.
The learning threshold is an exponentially decaying function
and is defined as follows:

N(t) = N0e
−λt, (1)

where N(t) is the threshold at epoch t, N0 = N(0) is the
threshold at epoch 0, and λ is the decay constant. Since loss
is higher in the initial phase of training, we set the meta-
cognitive threshold to a higher value. As training proceeds
and the loss decreases, we need to decrease the threshold
value as well. Therefore, an exponentially decaying thresh-
old function is used instead of a constant threshold.

The meta-cognitive threshold selectively samples the in-
stances based on an error term. For every predicted bounding
box assigned to a ground truth object, we calculate the er-
ror term which penalizes MC-YOLOv3T for assigning low
scores to the correct classes and attaching high scores to the
incorrect classes. The error term is defined as follows:

E = max(|p(0)−p̂(0)|, |p(1)−p̂(1)|, . . . , |p(c)−p̂(c)|), (2)

where the error term E is the maximum of the absolute
difference of the ground truth conditional class probability
p(0), p(1), . . . , p(c) and predicted conditional class proba-
bility p̂(0), p̂(1), . . . , p̂(c), and c is the maximum number
of classes. If the error term is less than the meta-cognitive
threshold, we set the classification loss contributed by the
bounding box prediction to zero. This ensures that MC-
YOLOv3T does not learn to classify an object instance if
its prediction is within the error limit prescribed, thereby
reducing overfitting. If the error term is more than the
meta-cognitive threshold, we retain the classification loss
contributed by such object instances. The loss function in
MC-YOLOv3T comprises of three components - classifica-
tion loss [14] which penalizes the class predictions made by
bounding boxes that predict objects, bounding box regression



loss [21] which penalizes the model for the predicted bound-
ing box coordinates, and objectness loss [14] which penalizes
the model for the confidence with which it makes object
predictions. These three losses are weighted as follows:

Total Loss = α Classification loss + β Bounding box
regression loss + γ Objectness loss

(3)

Finally, we train the network by using the back-propagation
algorithm. This training procedure is continued until the
predefined number of epochs are reached, following which
we use the trained network for detection. As the proposed
method is based on YOLO v3 Tiny, its detection phase is
identical to [14]. The complete training procedure is men-
tioned in Algorithm 1.

Algorithm 1 MC-YOLOv3T Training Procedure
Input: Number of epochs T , Initial meta-cognitive thresh-

old N(0), Final meta-cognitive threshold N(T ), Hyper-
parameters

Output: Trained network
1: t← 0
2: while t 6= T do
3: Pre-process training images and pass through MC-

YOLOv3T network
4: Obtain bounding box predictions
5: Compute meta-cognitive threshold, N(t), by using

Equation 1 and error term, E, by using Equation 2
6: Compute classification loss for every bounding box as-

signed to a ground truth object
7: Compute regression loss for every bounding box as-

signed to a ground truth object
8: Compute objectness loss for every bounding box
9: for Bounding box predictions which are assigned to

ground truth objects do
10: if E < N(t) then
11: Classification loss← 0
12: end if
13: end for
14: t← t+ 1
15: Compute total loss by using Equation 3
16: end while

4. EXPERIMENTAL RESULTS

We evaluate MC-YOLOv3T on MS COCO dataset [20]. For
evaluation, we use the metrics [14] of AP50:95, AP50, and
AP75, which denote the average precision at IoU thresholds
of 0.5 : 0.95, 0.5 and 0.75, respectively. We also use APS ,
APM and APL, which denote the average precision for small,
medium, and large objects, respectively. For pre-processing
the images, we use the technique of mosaic data augmenta-
tion [15] and resize images for multi-scale training, where

Hyper-parameter Values
Weight for regression loss (β) 3.54
Weight for classification loss (α) 37.4
Weight for objectness loss (γ) 64.3
Batch size 32
Momentum 0.937
Weight decay 0.0005
Initial Learning Rate 0.01
Final Learning Rate 0.0005
Epochs 600

Table 1: Hyper-parameter values used for training

Fig. 1: AP Improvement per class of COCO dataset. Green
dots indicate performance of baseline model, red lines indi-
cate performance gain using MC-YOLOv3T

sizes are chosen from {320, 352, ..., 608} in the multiples of
32. Hyper-parameters of the network are listed in Table 1.
Moreover, we use cosine scheduling for the learning rate and
stochastic gradient descent optimizer. We also set the initial
meta-cognitive threshold to 0.5 and final threshold to 0.05.
First, MC-YOLOv3T is trained on the complete training set
and 88% of the validation set of MS COCO 2014. We then
perform validation on the remaining 12% of the MS COCO
2014 validation set. Further, the performance is evaluated us-
ing MS COCO 2017 test set. The hardware acquired for train-
ing is an Intel Xeon 1.8 GHz NVIDIA RTX Titan GPU with
128 GB RAM and 500 GB SSD for training the network.

4.1. Results

In Table 2, we compare the performance of MC-YOLOv3T
against the baseline model at input image resolutions of
320, 416, 512, and 608 to juxtapose at different scales. As
MC-YOLOv3T has used a meta-cognition approach during
training, it has been exposed to fewer object instances than
the baseline model. We find that the loss of the baseline
model saturates at 300 epochs, whereas MC-YOLOv3T sat-
urates at 600 epochs. Although MC-YOLOv3T saturates at
600 epochs, it has outperformed the baseline model at 300
epochs only. The results evaluated on MS COCO 2017 test



AP50:95 AP50 AP75

Baseline
model

MC-YOLOv3T
300 epochs

MC-YOLOv3T
600 epochs

Absolute
delta

Baseline
model

MC-YOLOv3T
300 epochs

MC-YOLOv3T
600 epochs

Absolute
delta

Baseline.
model

MC-YOLOv3T
300 epochs

MC-YOLOv3T
600 epochs

Absolute
delta

YOLO v3 Tiny@320 15.5 17.6 17.8 +2.3 29.5 30.5 31 +1.5 14.6 17.6 18.1 +3.5
YOLO v3 Tiny@416 17.5 20.2 20.4 +2.9 33 35 35.3 +2.3 17 20.2 20.8 +3.8
YOLO v3 Tiny@512 18.7 21.2 21.5 +2.8 35.3 37.3 37.9 +2.6 18 21.2 21.6 +3.6
YOLO v3 Tiny@608 19.4 21.5 21.7 +2.3 37 38.5 38.7 +1.7 18.6 21.2 21.5 +2.9

Table 2: Overview of improvement in AP achieved by meta-cognitive training, evaluated on MS COCO 2014 validation set at
multiple image resolutions

(a) Detection results using the baseline model

(b) Detection results using MC-YOLOv3T

Fig. 2: Comparison of Detection Results as seen on a COCO
2017 Test set image

Baseline
model

MC-YOLOv3T
600 epochs

Absolute
delta

AP50:95 17.2 20.3 +3.1
AP50 32.5 35.1 +2.6
AP75 16.6 20.9 +4.4
APS 4.2 4.6 +0.4
APM 16.6 20.3 +3.7
APL 29.9 34.4 +4.5

Table 3: Overview of improvement in AP achieved by meta-
cognitive training, evaluated on MS COCO 2017 test set at
image resolution of 416

set are presented in Table 3. Here, it has been observed
that MC-YOLOv3T significantly outperforms the baseline
model. On the primary detection metric of AP50:95, we see
an improvement of 3.1%. Moreover, there is an improvement
of 2.6% (minimum) and 4.4% (maximum) on the metric
of AP50 and AP75, respectively. These results suggest that
MC-YOLOv3T yields better improvements at higher IoU
thresholds, i.e., AP75. Further, we compute APS , APM , and
APL. In Table 3, there is a marginal increment of 0.4% for
small objects detection (APS) due to the absence of a de-
tection layer for small objects in MC-YOLOv3T. Moreover,
significant improvements of 3.7% and 4.5% have been ob-
served for medium (APM ), and large (APL) objects detection,
respectively.

The results in Table 3 are the average precision over 80
classes of the dataset and do not fully reflect per class AP
changes. Therefore, we plot per class AP improvements in
Figure 1. In this figure, it can be observed that MC-YOLOv3T
has exhibited an improvement for all classes. The highest
increment of 7.9% is observed for the class ’bear’. How-
ever, there is a marginal improvement for a few classes. The
marginal improvement for such classes is due to data imbal-
ance, as these classes have fewer annotated instances in the
training set, as compared to other classes.

We have also illustrated the detection results in Figure 2a
and 2b for the baseline model and MC-YOLOv3T, respec-
tively. The latter makes detections on the ‘surfboard’ cate-
gory, which are absent in the former model. Furthermore,
confidence scores for the ‘person’ category are higher in MC-
YOLOv3T. These results indicate the superiority of our pro-
posed method over baseline due to meta-cognitive principles.

5. CONCLUSION

In this paper, we have employed a meta-cognitive learning-
based sample selection strategy with YOLO v3 Tiny for ob-
ject detection. The proposed MC-YOLOv3T, shows signif-
icant performance improvement across all input image reso-
lutions. In particular, it yields greater improvements as the
size of the object increases. Therefore, it has exhibited the
best performance in case of large object detection. Finally,
it is noteworthy that the MC-YOLOv3T achieves maximum
4.4% improvement without any computational burden in the
inference.



6. REFERENCES

[1] S. Liu and W. Deng, “Very deep convolutional neural
network based image classification using small training
sample size,” in Proceedings of the Asian Conference
on Pattern Recognition. IAPR, 2015, pp. 730–734.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2016, pp. 770–778.

[3] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Ag-
gregated residual transformations for deep neural net-
works,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition. IEEE, 2017, pp. 5987–
5995.

[4] G. Huang, Z. Liu, L. Van Der Maaten, and K.Q. Wein-
berger, “Densely connected convolutional networks,” in
Proceedings of the Conference on Computer Vision and
Pattern Recognition. IEEE, 2017, pp. 2261–2269.

[5] A. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” ArXiv, vol.
abs/1704.04861, August 2017.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik,
“Region-based convolutional networks for accurate ob-
ject detection and segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 38, pp.
142–158, January 2016.

[7] R. Girshick, “Fast r-cnn,” in Proceedings of the Inter-
national Conference on Computer Vision. IEEE, 2015,
pp. 1440–1448.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-
cnn: Towards real-time object detection with region pro-
posal networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, pp. 1137–1149, June
2017.

[9] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detec-
tion via region-based fully convolutional networks,” in
Proceedings of the Advances in neural information pro-
cessing systems, 2016, pp. 379–387.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C-Y. Fu, and A.C. Berg, “Ssd: Single shot multibox
detector,” in European conference on computer vision.
Springer, 2016, pp. 21–37.

[11] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Fo-
cal loss for dense object detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 42,
pp. 318–327, February 2020.

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object detec-
tion,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition. IEEE, 2016, pp. 779–
788.

[13] J. Redmon and A. Farhadi, “Yolo9000: Better, faster,
stronger,” in Proceedings of the Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE,
2017, pp. 6517–6525.

[14] J. Redmon and A. Farhadi, “Yolov3: An incremental
improvement,” ArXiv, vol. abs/1804.02767, 2018.

[15] A. Bochkovskiy, C.Y. Wang, and H. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” ArXiv,
vol. abs/2004.10934, 2020.

[16] G.S. Babu and S. Suresh, “Meta-cognitive neural net-
work for classification problems in a sequential learning
framework,” Neurocomputing, vol. 81, pp. 86–96, April
2012.

[17] G.S. Babu, X. Li, and S. Suresh, “Meta-cognitive
regression neural network for function approximation:
Application to remaining useful life estimation,” in Pro-
ceedings of the International Joint Conference on Neu-
ral Networks, 2016, pp. 4803–4810.

[18] A. Das, Nguyen Anh, S. Suresh, and N. Srikanth, “An
interval type-2 fuzzy inference system and its meta-
cognitive learning algorithm,” Evolving Systems, vol.
7, pp. 95–105, March 2016.

[19] N. Anh, M. Prasad, N. Srikanth, and S. Sundaram,
“Wind speed intervals prediction using meta-cognitive
approach,” Procedia computer science, vol. 144, pp.
23–32, 2018.

[20] T.-Y Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C.L. Zitnick, “Microsoft
coco: Common objects in context,” in Proceedings of
the European conference on computer vision. Springer,
2014, pp. 740–755.

[21] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid,
and S. Savarese, “Generalized intersection over union:
A metric and a loss for bounding box regression,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 658–666.


	1  INTRODUCTION
	2  Background
	3  Meta-cognitive YOLO V3 Tiny
	4  Experimental Results
	4.1  Results

	5  Conclusion
	6  References

