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ABSTRACT
The respiratory system is one of the major components of
the speech production system. Any alteration in breathing
can result in changes in speech. Specific breathing charac-
teristics, such as breathing rate and tidal volume, can indi-
cate a person’s pathological condition. More recently, neu-
ral network-based methods have started emerging for predict-
ing the breathing signal from the speech signal. The neural
networks are trained and evaluated with different objective
measures, such as mean squared error (MSE) and Pearson’s
correlation. This paper investigates whether there is a sys-
tematic relationship between the different objective measures
used for training and evaluating the neural network models
and the end-goal, i.e. estimation of breathing parameters such
as, breathing rate and tidal volume. Our investigations on two
different data sets with two different neural network-based ap-
proaches show that there is no clear systematic relationship.
In other words, obtaining a high Pearson’s correlation on the
evaluation set does not necessarily mean better breathing pa-
rameter estimation. Thus, indicating the need for developing
other objective evaluation measures.

Index Terms— Respiratory parameters, Neural Net-
works, Speech breathing

1. INTRODUCTION

The respiratory system provides the necessary energy for pro-
ducing speech by pushing air through vocal folds. This mech-
anism is called Speech Breathing [1]. Any changes in breath-
ing can result in variations in speech. Pathological conditions,
such as heart diseases, Parkinson’s Disease (PD), and Chronic
Obstructive Pulmonary Diseases (COPD), can significantly
affect the breathing patterns. Measuring such variations can
be used to investigate the underlying health condition of a per-
son [2]. Breathing parameters such as breathing rate and tidal
volume are used to quantify the variations in breathing. Es-
timating breathing parameters from speech therefore can be
used as a non-intrusive diagnosis method.

Earlier studies on the relationship between breathing and
speech show that the type of speech can affect breathing pat-
terns [3, 4, 5], and breathing can shape the speech as well [6].
Speech breathing also impacts other speech aspects such as
voice quality [7], voice onset time [8], and loudness [9].

Predicting breathing patterns from speech signal has only
recently gained more attention. Nallanthighal et al. used log
Mel Spectrogram of speech to train a Convolutional Neural
Network (CNN) and a Long Short-Term Memory Recurrent
Neural Network (LSTM-RNN) to predict the breathing signal
[10, 11]. More recently, as part of Interspeech 2020 Com-
ParE challenge, Schuller et al., introduced several methods,
including an End-to-End system consisting of a CNN com-
bined with an LSTM-RNN to predict the breathing signal
from speech [12]. In these works Pearson’s correlation coef-
ficient (r), which is generally used to determine the similarity
between two signals, is used as quality measure for evaluat-
ing the performances of the systems. The other alternative
measure studied in [10, 11] is the mean squared error (MSE).

As an end goal, the speech signal-based breathing param-
eter estimation can be regarded as a non-intrusive ”instru-
ment” for measuring breathing parameters. In other words,
from the predicted signal we should be able to measure well
breathing parameters such as breathing rate and tidal volume
for application purposes. The neural network training and
evaluation does not consider these aspects. So, a question that
arises is: whether the evaluation measures used to evaluate the
breathing signal prediction models are sufficient indicators for
reliable breathing parameter estimation? We address this re-
search question through single database and cross database
studies using two deep learning-based approaches.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a background on estimation of breathing pa-
rameters from the breathing signal. Section 3 presents the
experimental setup and Section 4 presents our result and anal-
ysis. Section 5 finally concludes with key observations.



2. BREATHING PARAMETERS ESTIMATION

Figure 1 illustrates speech signal with the ground truth breath-
ing signal and a predicted breathing signal.

(a) (b)

Fig. 1: (a) Speech waveform and corresponding breathing
signal and (b) Predicted and ground truth breathing signals.

Different breathing parameters are estimated from the
breathing signal in the following manner:

1. Breath event is the event of inhalation, which marks
the beginning of the breathing cycle. A breathing cy-
cle during speech includes a sharp peak during inhala-
tion and a gradual decline during exhalation which is
repeated over the course of an utterance, as shown in
Figure 1. The breath events are detected using the Au-
tomatic Multiscale Peak Detection algorithm (AMPD)
[13]. The sensitivity of breath events is reported to eval-
uate the overlap of breath events between actual and
predicted breathing signals.

2. Breathing rate is the average number of breath events
per minute [14].

3. Speech Tidal volume is a measure of the amount of air
a person inhales during a normal breath for speech. It
gives information about the lung capacity of a person
[15]. We use the normalized average area under the
curve per breath as speech tidal volume for both ac-
tual and estimated breathing signals. The area under
the curve per breath is the area between an estimated
baseline and the actual signal values between each two
local minimums. We consistently use the term ”tidal
volume” to describe the above-mentioned speech tidal
volume equivalent in this paper.

The important aspect while computing breathing parame-
ters is fixing a look-ahead window for computing the peaks in
the signals using AMPD algorithm. We fix this window to 2s
or 50 samples for the signal with sampling rate of 25 Hz. This
2s window is selected based on our observation that the min-
imum gap between two inhalation breath events is more than
2s. We use the same look-ahead window for both estimated
and ground truth breathing signals. Figure 2 illustrates an ex-
ample of a breathing signal with marked breathing events and
estimated baseline.
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Fig. 2: An illustration of breathing pattern and the estimated
breath events (peaks), local minimums, and baseline used for
breathing parameter estimation.

3. EXPERIMENTAL SETUP

3.1. Dataset and evaluation protocol

We used the UCL Speech Breath Monitoring (UCL-SBM)
database provided as part of Interspeech 2020 ComParE chal-
lenge [12]. This database includes recordings of conversa-
tional speech from 49 speakers which are divided into three
non-overlapping subsets; 17 speakers in Train, 16 speakers in
Dev, and 16 speakers in Test subset. For each speaker a 4 min-
utes recording of speech with sampling frequency of 16kHz
is provided. For speakers in Train and Dev set, the breathing
signal with sampling frequency of 25 Hz is provided. Similar
to the studies done in [12], all the systems were trained using
the Train set, the first 15 speakers for training and the last 2
speakers for cross validation. We then tested our systems on
the whole Dev set.

Beside training and evaluating the neural networks on a
single database, we also conducted a cross database study
where models trained on UCL-SBM database are tested on
the Philips read speech database introduced in [11]. The
Philips database includes the recordings from 40 healthy sub-
jects (18 female and 22 male with age group ranging from
21 to 40 years old). The subjects are asked to read ”The
Rainbow Paragraph.”, a widely used phonetically balanced
paragraph [16]. The speech and breathing signal are recorded
with sampling frequency of 48kHz and 2kHz respectively.
For our experiments we downsampled the breathing signal to
acquire the same sampling frequency as UCL-SBM database,
i.e. 25Hz.

As per the ComParE challenge evaluation protocol, the
performances are reported for a single signal made by con-
catenating the predicted breathing signal and the ground truth
signal for all the files in the Dev set. The Pearson’s correla-
tion coefficient (r) is used as the measure of evaluation. We
also computed mean squared error (MSE), as an alternative
measure. We analyzed these measures w.r.t to the errors in
estimation of breathing parameters presented in Section 2.



3.2. Approaches

We performed our studies using different systems obtained
based on two different neural network-based approaches, as
part of the Interspeech 2020 ComParE challenge investiga-
tion. The Pearson’s correlation for the best baseline system on
the Test set was 0.731 [12]. The approaches reported in this
paper obtained a best Pearson’s correlation of 0.707 on the
Test set of the challenge [17]. We briefly present these sys-
tems in this section. More information can be found in [17].

3.2.1. Raw speech waveform modeling based approach

This approach takes inspiration from recent works on speech
recognition [18] speaker recognition [19], and gender recog-
nition [20]. As illustrated in Figure 3, in this approach the
input to the neural network is raw speech waveform and the
output is a sample-by-sample prediction of the breathing sig-
nal.

The CNN model consisted of four convolution layers fol-
lowed by a hidden layer, and then finally an output layer. The
number of filters in convolution layers were 128-256-512-512
with kernel sizes of 30-10-4-3 and kernel strides of 10-5-2-1.
After each layer, there were max-pooling layers with strides
of 2-3-1-1 and rectified linear unit (ReLu) as activation func-
tion. The MLP had one hidden layer with 10 hidden units with
hyperbolic tangent (Tanh) as the activation function. Batch
normalization was also applied after each layer. The output
layer consisted of one unit with linear activation. Adam opti-
mizer [21] with learning rate of 0.001 was used for training.
The system was implemented using Tensorflow [22].

Three different loss functions had been used to train the
CNNs, namely,

• Mean squared error loss denoted as MSE.

• A custom correlation loss defined as follows:

LCorr(y, f(x)) =
1

1 + r(y, f(x))
− 0.5 (1)

where r(y, f(x)) is the Pearson’s correlation coeffi-
cient. This loss function is denoted as Corr. During
training, the loss function was computed by predicting
the breathing signal for a fixed number of consecutive
input frames and calculating the correlation between
the predicted and ground truth signals for that duration.

• a composite loss combining MSE and Corr, denoted as
Corr-MSE,

The two hyper-parameters namely input window length
and correlation window length were chosen after repeated ex-
perimentation. The former is the duration of past speech sig-
nal input to the system at each time frame and the latter is the
number of consecutive samples used for calculating correla-
tion based loss functions. The best system with MSE loss had
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Fig. 3: An illustration of the raw waveform modeling based
approach for breathing signal prediction.

input window length of 3s. The input window length for the
best systems trained with Corr and Corr-MSE loss were 2s
and 3s, respectively. The best correlation window length for
both correlation based loss function was 1024 samples. The
input frame shift was 40 ms, corresponding to the sampling
rate of the output signal.

3.2.2. Short-term speech spectral feature-based approach

In this approach, log Mel spectrogram is fed as input to an
LSTM-RNN model and the breathing signal is predicted at
the output in a sample-by-sample manner [10]. The LSTM-
RNN model consisted of two LSTM layers with 128 hidden
units. Adam optimiser with a learning rate of 0.001 was used
to train the network. The system was implemented using Py-
Torch [23]. Two different loss functions had been used to
train the network, namely,

• Mean squared error loss denoted as MSE.

• BerHu loss [24]:

Lδ(y, f(x)) =

{
(|y − f(x)| − 0.5δ), if |y − f(x)| ≤ δ
δ ∗ 0.5 ∗ (y − f(x))2, otherwise

(2)

The motivation behind using BerHu loss was the fact that, in
speech breathing patterns, usually a sudden peak (inhalation)
is followed by a gradual descending curve (exhalation). Thus,
for the model to estimate breathing patterns, the loss function
should be more sensitive to peaks (outliers) and less sensi-
tive for the rest, which can be achieved by using BerHu loss
function.

4. RESULTS AND ANALYSIS

As mentioned earlier, all the neural network models were
trained on ComParE challenge UCL-SBM training set. We
conducted two breathing parameter estimation and evaluation
studies, (a) single database study, where the breathing signal
is estimated on the ComParE challenge Dev set of the UCL-
SBM data and (b) cross database study, where the breathing
signal is estimated on the whole Philips read speech database.
The evaluation of the breathing parameters estimated from the
predicted signal was carried out by comparing them to the



ground truth and measuring breathing rate (BR) error, breath
event (BE) sensitivity and tidal value (TV) error. In the re-
mainder of the section, for the sake of clarity, we will denote
the systems in the following format: ANN type input type loss
function.

4.1. Single database

Table 1 presents the result of the systems trained and tested
on UCL-SBM data set.

Table 1: The r, MSE and breathing parameters for systems
using raw waveform based and spectral based approaches.
The abbreviations used for breathing parameters in the table
are as following: BR=Breathing Rate, BE=Breathing Events,
and TV=Tidal Volume.

loss
Functions r MSE Breathing Parameters

BR
error
(%)

BE
Sensitivity

TV
error
(%)

Raw Waveform Based Approach
MSE 0.411 0.0263 11.31% 0.887 28.13%
Corr 0.49 2.1068 39.77% 0.982 12.94%
Corr-MSE 0.463 0.0253 22.96% 0.933 18.25%

Spectral Based Approach
MSE 0.482 0.039 11.65% 0.908 13.42%
BerHu 0.448 0.018 14.42% 0.882 11.68%

It can be seen that the systems trained with both ap-
proaches are performing closely in terms of correlation. This
performance is comparable to the ComParE challenge best
baseline system performance reported on the Dev set [12].
It can be observed that other metrics calculated for the sys-
tems are largely different. For example, the CNN raw Corr
system with the correlation of 0.49 has a very high MSE
and BR error compared to all the other systems, but the TV
error for it is among the lowest. If we consider the systems
trained with MSE loss, i.e. CNN Raw MSE, and LSTM-
RNN Spec MSE, we observe that they both yield similar
error for breathing rate (11.31% vs 11.65%) and MSE (0.026
vs 0.039), while the correlation and TV error for them are
very different. Furthermore, if we compare CNN Raw Corr-
MSE and LSTM-RNN Spec BerHu with similar correlation
and MSE, we observe a large difference in breathing parame-
ters, around 8% for BR error and 6% for TV error.

4.2. Cross database

Table 2 shows the performance of the systems trained on
UCL-SBM database (models in Table 1) when tested on the
whole 40 subjects of the Philips database.

It can be seen that the systems corresponding to the spec-
tral based approach are yielding a higher correlation com-

Table 2: Train on UCL-SBM conversational speech database
and test on all Philips read speech database.

loss
Functions r MSE Breathing Parameters

BR
error
(%)

BE
Sensitivity

TV
error
(%)

Raw Waveform Based Approach
MSE 0.187 0.0737 10.91% 0.715 4.79%
Corr 0.298 1.9923 33.45% 0.993 5.14%
Corr-MSE 0.137 0.0928 19.81% 0.886 15.3%

Spectral Based Approach
MSE 0.324 0.072 13.22% 0.862 11.56%
BerHu 0.292 0.108 16.82% 0.804 17.84%

pared to the systems corresponding to the raw waveform mod-
eling based approach, but they yield higher TV error. Further-
more, although the correlation values are considerably low
compared to the single database study, the BR error, BE sen-
sitivity and TV error are in similar ranges. Interestingly, the
raw waveform based approach with MSE yields one of the
lowest TV error, despite having a very low correlation.

It is evident from these results that r and MSE measures
are not good indicators of BR error, BE sensitivity and TV
error.

5. CONCLUSION

Speech-based breathing signal prediction using neural net-
works is an emerging area of research. Currently, these
models are evaluated based on Pearson’s correlation between
the predicted breathing signals and the ground truth signals.
Breathing signal prediction and breathing parameter estima-
tion studies conducted in this paper on two data sets with five
different systems show that high Pearson’s correlation mea-
sure or low MSE not necessarily indicates better breathing
parameter estimation. Our future work will focus on investi-
gating neural network training loss functions and evaluation
measures that take into consideration breathing parameter
estimation, in order to be consistent with the end-goal.

6. ACKNOWLEDGEMENTS

This work was partially supported by the Swiss National Sci-
ence Foundation (SNSF) through the project Towards Inte-
grated processing of Physiological and Speech signals (TIPS)
grant number 200021 188754, and the Horizon H2020 Marie
Skłodowska-Curie Actions Initial Training Network Euro-
pean Training Network project under grant agreement No.
766287 (TAPAS) and Data Science Department, Philips Re-
search, Eindhoven.



7. REFERENCES

[1] C Von Euler, “Some aspects of speech breathing phys-
iology,” in Speech motor control, pp. 95–103. Elsevier,
1982.

[2] N.P. Solomon and T.J. Hixon, “Speech breathing in
parkinson’s disease,” Journal of Speech, Language, and
Hearing Research, vol. 36, no. 2, pp. 294–310, 1993.

[3] Wang et al., “Breath group analysis for reading and
spontaneous speech in healthy adults,” Folia Phoni-
atrica et Logopaedica, vol. 62, no. 6, pp. 297–302,
2010.

[4] Henderson et al., “Temporal patterns of cognitive activ-
ity and breath control in speech,” Language and Speech,
vol. 8, no. 4, pp. 236–242, 1965.

[5] Winkworth et al., “Variability and consistency in speech
breathing during reading: Lung volumes, speech inten-
sity, and linguistic factors,” Journal of Speech, Lan-
guage, and Hearing Research, vol. 37, no. 3, pp. 535–
556, 1994.

[6] M Włodarczak and M Heldner, “Respiratory Con-
straints in Verbal and Non-verbal Communication,”
Frontiers in Psychology, vol. 8, May 2017.

[7] J Slifka, “Some physiological correlates to regular and
irregular phonation at the end of an utterance,” Journal
of Voice, vol. 20, no. 2, pp. 171 – 186, 2006.

[8] Hoit et al., “Effect of lung volume on voice onset time
(vot),” Journal of Speech, Language, and Hearing Re-
search, vol. 36, no. 3, pp. 516–520, 1993.

[9] J. E. Huber, B Chandrasekaran, and J. J. Wolstencroft,
“Changes to respiratory mechanisms during speech as a
result of different cues to increase loudness,” Journal
of Applied Physiology, vol. 98, no. 6, pp. 2177–2184,
2005, PMID: 15705723.

[10] V. S. Nallanthighal, A. Härmä, and H. Strik, “Deep sens-
ing of breathing signal during conversational speech,” in
Proc. of Interspeech, 2019, pp. 4110–4114.

[11] V. S. Nallanthighal, A. Härmä, and H. Strik, “Speech
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