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ABSTRACT

COVID-19 pandemic spreaded across the world in early
2020. It forced many countries to impose lockdown to pre-
vent surge in the number of infected cases. There has been a
huge impact on social and economic activities worldwide. In
this work, we carry out the functional modeling of COVID-
19 infection trends using two models: the Gaussian mixture
model (GMM) and the composite logistic growth model
(CLGM). Unlike the traditional SIRD models that use nu-
merical data fitting, we utilize the best data-fitted curves
employing GMM and/or CLGM to construct the Susceptible-
Infected-Recovered-Dead (SIRD) pandemic model. Further,
we derive the explicit expressions of time-varying parameters
of the SIRD model unlike most works that consider static
parameters without any closed form solution. The proposed
parameterized dynamic SIRD model is generically applicable
to any pandemic, can capture the day-to-day dynamics of
the pandemic and can assist the governing bodies in devising
efficient action plans to deal with the prevailing pandemic.

Index Terms— COVID-19 modeling, Gaussian mixture
model, Composite logistic growth function, Time-varying re-
production number, dynamic SIRD model

1. INTRODUCTION
The world is dealing with a pandemic situation caused by the
rapid spread of novel coronavirus disease (COVID-19). It
started towards the end of year 2019 and has resulted in more
than 1.05 million deaths worldwide [1] and loss of livelihoods
for many more. COVID-19 is highly contagious and hence,
strict social distancing norms need to be followed to arrest
the spread of this disease [2]. In order to ensure the safety
of the population, a lot of restrictions have been imposed by
the governing authorities. The virus primarily enters the body
through mouth and nose [3]. Thus, people have been advised
to wear face masks, whenever they step out of their homes.

Biologists across the globe are trying to develop a vaccine
against this disease, while some researchers are analyzing this
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challenging situation by providing mathematical models to
capture and predict the trend of infections. These models
would assist the authorities in devising appropriate strategies
to cope up with the pandemic more effectively. Some parts
of the world are experiencing a bigger second wave of fresh
cases [1], after it was thought that the pandemic had already
passed. Hence, a careful examination of the current situation
is paramount in this need of the hour.

Susceptible-Infected-Removed (SIR) [4, 5] is the most
popular and widely-used mathematical model to assess the
daily variations in the number of people getting infected. It
has been applied in [6] for early prediction of COVID-19 out-
break in mainland China. Some variations of the SIR model
have also been proposed in the literature [7, 8]. For exam-
ple, a Susceptible-Infected-Recovered-Dead (SIRD) model is
obtained by considering ‘recovered’ and ‘dead’ cases sepa-
rately instead of a single category of ‘removed’ cases. This
model is studied in [7] to analyze the trend of infections in
China, Italy and France. Susceptible-Exposed-Infectious-
Removed (SEIR) model is explored in [8]. Amongst other
efforts to analyze the pandemic, authors in [9] suggest the use
of long short-term memory (LSTM) model for predicting the
number of cases in the near future. Prediction is performed
using a Gaussian mixture model (GMM) in [10] while an
auto-regressive integrated moving average (ARIMA) model
is employed in [11]. A recent study [12] identifies situational
information from social media platforms to gather relevant
information, enabling a quick response by the local authori-
ties.

The original SIRD model has the following limitations:
(1) A closed form solution of the SIRD model is not available
in the literature. (2) It assumes all parameters to be constant,
while these parameters change with time in the real scenario.
(3) The parameters are first estimated from the given data
using the optimization algorithms. Then, the SIRD model
is solved by numerical methods. Since many independent
datasets are used, the problem translates to a multi-objective
function minimization and is computationally complex. (4)
Generally, the SIRD model uses a single wave to fit the data,
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which are actually multi-modal. Hence, it is not able to pre-
dict and track the pandemic accurately. The modified SIRD
model proposed in this work solves all these issues and uses
the actual data for infected, recovered and dead cases. Thus,
it provides the best results for continuous monitoring and pre-
diction of the pandemic. Since, India is the second most pop-
ulous country of the world and has witnessed a large number
of cases, results on COVID-19 data modeling are presented
for India. But the method is generic and can be applied to any
other country.

The main contributions of this study are as follows: (1)
We have connected the SIRD model with Gaussian mix-
ture model (GMM) and/or the composite logistic growth
model (CLGM). (2) Each of the SIRD waves obtained from
the real-data for COVID-19 are decomposed into multiple
waves to accommodate the GMM and/or CLGM, thereby,
capturing the multi-modal trend for data. (3) Instead of es-
timating parameters by considering them as static, we have
derived the explicit expressions for the SIRD parameters
considering them as functions of time. This looks natural
because the death rate, growth rate, spread, mean infection
time, etc. of a pandemic change over time depending on the
local efforts, citizens’ response, treatment availability, and
administrative decisions on managing the pandemic. Thus,
these time-varying parameters reflect the dynamic trends and
predictions are made for the future. (4) The proposed frame-
work can be used with other growth functions such as beta,
Kumaraswamy, Irwin–Hall, Fréchet, or Weibull to build any
variant of SIRD model.

The paper is organized as follows. The proposed SIRD
model with GMM, CLGM, and dynamic parameter modeling
is presented in Section-2. Simulation results are provided in
Section-3. Conclusions are presented in Section-4.

2. PROPOSED DATA-DRIVEN SIRD MODEL
In this section, first we discuss the classical Susceptible-
Infected-Recovered-Dead (SIRD) model. The classical SIRD
epidemic model [4,7] is defined by the following initial-value
problem:

dS

dt
=
−βIS
N

, S(0) = S0 ≥ 0, (1a)

dI

dt
=
βSI

N
− γI − µI, I(0) = I0 ≥ 0, (1b)

dR

dt
= γI, R(0) = R0 ≥ 0, (1c)

dD

dt
= µI, D(0) = D0 ≥ 0, (1d)

where S(t), I(t),R(t), andD(t) are the numbers of suscepti-
ble, infected, recovered, and dead cases, respectively, β is the
contact/infection rate (i.e., the average number of contacts per
person per unit time), γ is the recovery rate (1/γ represents
the average infectious period), and µ is the death rate. The
total population size, assumed to be a constant, is obtained as

S(t) + I(t) +R(t) +D(t) = N. (2)

It is evident from (1) and (2) that dS
dt + dI

dt +
dR
dt + dD

dt = 0.

For an outbreak of the pandemic, dI
dt > 0, i.e., the change

in the infected cases is positive implying a positive growth in
infected cases. Thus, from (1b), one can obtain the reproduc-
tion number (RN), R0 = βS

N(γ+µ) > 1. It is an important
parameter and refers to the number of fresh infections caused
by an infected person. The value of R0 > 1 indicates that the
infection is growing with time, R0 = 1 indicates flattening
of the infection, while R0 < 1 shows that the infection is de-
creasing and a pandemic outbreak will eventually disappear.
We propose to decompose the data into multiple waves and
obtain

I =

M1∑
i=1

Ii, R =

M2∑
i=1

Ri, D =

M3∑
i=1

Di, (3a)

S = N −
M1∑
i=1

Ii −
M2∑
i=1

Ri −
M3∑
i=1

Di, (3b)

where the total cumulative cases C(t) = I(t) +R(t) +D(t)
andN = C(T ) with T denoting the time-duration of the pan-
demic, i.e., t ∈ [0, T ].

The data for cumulative, infected, recovered and dead
cases due to COVID-19 pandemic are available online for
most of the countries. The waves for C(t), R(t), and D(t)
exhibit a monotonically increasing trend. Hence, they are fit-
ted using integrals of GMM, while I(t) can be fitted directly
with real-data using GMM as

C(t) =

M1∑
i=1

Ci(t) =

M1∑
i=1

∫ t

0

ai exp

(
−
(
τ − bi
ci

)2
)
dτ,

(4a)

I(t) =

M2∑
i=1

Ii(t) =

M2∑
i=1

ai exp

(
−
(
t− bi
ci

)2
)
, (4b)

R(t) =

M3∑
i=1

Ri(t) =

M3∑
i=1

∫ t

0

ai exp

(
−
(
τ − bi
ci

)2
)
dτ,

(4c)

D(t) =

M4∑
i=1

Di(t) =

M4∑
i=1

∫ t

0

ai exp

(
−
(
τ − bi
ci

)2
)
dτ,

(4d)

and the daily cases are fitted and obtained as

dC(t)

dt
=

M1∑
i=1

ai exp

(
−
(
t− bi
ci

)2
)
. (5)

The other derivatives can be computed from (4) in a similar
manner. Likewise, C(t), I(t), R(t), and D(t) can be fitted
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using the CLGM as

C(t) =

M1∑
i=1

Ci(t) =

M1∑
i=1

Ki

1 +Ai exp(−ri(t− τi))
, (6a)

I(t) =

M2∑
i=1

Ii(t) =

M2∑
i=1

KiAiri exp(−ri(t− τi))
(1 +Ai exp(−ri(t− τi)))2

, (6b)

R(t) =

M3∑
i=1

Ri(t) =

M3∑
i=1

Ki

1 +Ai exp(−ri(t− τi))
, (6c)

D(t) =

M4∑
i=1

Di(t) =

M4∑
i=1

Ki

1 +Ai exp(−ri(t− τi))
, (6d)

where the daily cases are given by

dC(t)

dt
=

M1∑
i=1

KiAiri exp(−ri(t− τi))
(1 +Ai exp(−ri(t− τi)))2

. (7)

The number of Gaussian (or LGM) waves and the parameters
ai, bi, ci (or Ki, Ai, ri, τi) for each wave are estimated by the
minimization of the objective function (with τ1 = 0) given
by the sum of squares for residuals of values [13, 14]. The
minimization process uses the simplex search method in order
to estimate the optimal values of the unknown parameters.
Finally, the time-varying parameters of the SIRD model are
computed from (1) as

β = −dS

dt
× N

IS
, γ =

dR

dt
× 1

I
, (8a)

µ =
dD

dt
× 1

I
, and R0 =

βS

N(γ + µ)
. (8b)

3. RESULTS AND DISCUSSION
In this section, we present results obtained for COVID-19
progression in India using the proposed model. The data is
obtained from the Worldometer [1] and WHO daily situation
report [2]. The data from March 01, 2020 to October 01, 2020
is used for fitting the model and thereafter, the future values
are predicted using the obtained model. Considering the ac-
tual data till October 16, 2020, the predicted values for the last
15 days are compared. The values for the root mean square
error (RMSE) are provided for both the models in Table 1.
Since the RMSE with both the growth function models are
comparable for India, SIRD curves and parameter values are
provided only for the GMM for the sake of brevity, although
results can be obtained for CLGM in a similar manner.

Fig. 1 shows the trend of cumulative, susceptible, in-
fected, recovered, and death cases estimated using GMM.
The actual values are also shown for all of these. Since the
data for the susceptible cases is not available, it has been
estimated using the proposed model.

From Fig. 1, the estimated values are found to agree
with the actual data within small margins of error. The error
between the estimated and actual cases can be attributed to

Table 1: The RMSE values obtained by GMM and CLGM
for fitting and prediction of SIRD waves

SIRD
waves

GMM CLGM
Fitting Prediction Fitting Prediction

C(t) 4.25e+03 1.31e+04 4.03e+03 1.31e+04

I(t) 1.68e+04 5.44e+04 2.54e+04 5.55e+04

R(t) 3.59e+03 8.79e+03 3.56e+03 8.74e+03

D(t) 126.2 192.8 132.1 198.1

Cumulative estimated cases

Cumulative reported cases

Estimated D(t)

Actual D(t)

Estimated R(t)

Actual R(t)

Estimated I(t)

Actual I(t)

Estimated S(t)

Fig. 1: Cumulative cases and SIRD waves (susceptible, infected,
recovered and death cases) for COVID-19 data of India fitted from
March 01, 2020 to October 01, 2020 by GMM and predicted there-
after.

the daily variations in testing and other effects due to policy
changes. The optimum parameter values of GMM obtained
for fitting the data are given in Table 2. These parameters
are estimated within the 95% confidence interval. It is ob-
served that the cumulative, recovered, and death cases are
modelled as a single Gaussian wave, while the infected cases
are modelled by two Gaussian waves.

Table 2: Parameters obtained by fitting GMM for cumulative, in-
fected, recovered, and death cases of COVID-19 data of India from
March 01, 2020 to October 01, 2020

SIRD waves ai bi ci

Cumulative C(t) 8.476e+04 212.2 63.88

Infected I(t)
8.813e+05 224.2 76.53

1.297e+05 217.7 13.07

Recovered R(t) 8.328e+04 224.7 66.1

Dead D(t) 1067 209.6 82.74

The wave-forms for susceptible, infected, recovered, and
death cases estimated using GMM are used to calculate the
parameters of the SIRD model from (8). Unlike the tra-
ditional SIRD model, wherein the infection rate, recovery
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Fig. 2: Time-varying SIRD parameters estimated for COVID-19
data of India using the modeling of (8) based on the SIRD model
with GMM: infection rate (β), recovery rate (γ), death rate (µ), and
reproduction number R0.

rate, death rate and reproduction number are generally taken
to be constant parameters, the proposed modeling approach
presents closed-form explicit expressions of these parameters.
The estimated parameter waves for India are shown in Fig. 2.
This approach provides realistic modeling of the parameters
because with the actual situation of the pandemic and pol-
icy decisions, these parameter values will change with time.
Further, these time-varying parameters can be tracked by the
health sector and the administrative authorities for managing
the resources and implementing policies. The recovery rate
γ increased consistently to a value of 0.088 till September
12, 2020 and has shown slight variations since then. On the
other hand, death rate µ has monotonically decreased to a
current value of 0.001. On March 12, 2020, R0 was 5.93,
and has been gradually decreasing since then owing to the
lock-downs imposed by the government. Its estimated value
on October 17, 2020 is 0.89. In line with this observation of
R0 < 1, we also note from the I(t) curve that the infected
cases have started declining.

Fig. 3 (top subfigure) shows the cumulative cases C(t),
Fig. 3 (middle subfigure) shows fresh cases reported on a
daily basis, and daily cases’ growth rate is depicted in Fig. 3
(bottom subfigure). The SIR model has been adapted from
the MATLAB files provided by Milan Batista [15]. The pre-
dicted values for the total cases and cases per day converge to
the actual values provided till October 17, 2020. The growth
factor of daily cases, defined by dC/dt

C × 100%, was 13% on
March 3, 2020, started declining from the end of April, 2020,
declined below 5% on May 22, 2020, and has now reduced
to less than 1% in the month of October. This shows that
the growth factor is on a constant decline. The reproduction
number, β and γ (by definition, γSIR = γSIRD + µSIRD) values

estimated using SIR model are 1.93, 0.073, and 0.038, respec-
tively. However, these constant values are not able to capture
the variations as a function of time. Also, the traditional SIR
and SIRD models generate RMSE of 28635 and 30475, re-
spectively, for the cumulative cases, whereas the proposed
method results in a lower RMSE of 4250 with GMM, and
RMSE of 4030 with CLGM as shown in Table 1.

Fig. 3: The SIR model fitting for the COVID-19 cases of India
(actual data: March 1, 2020 to October 17, 2020). Top subfigure:
modeling of the total (cumulative) number of people infected C(t);
middle subfigure: modeling of new cases reported on daily basis;
and bottom subfigure: predicted versus actual value of growth factor
of daily cases computed as dC/dt

C
× 100%.

4. CONCLUSION
This paper has presented a modified SIRD model that fits the
pandemic data using well-defined functions of GMM and/or
CLGM, unlike the traditional SIRD model that is based on
pure data fitting. Subsequently, these functions are integrated
into the SIRD model to derive explicit expressions of SIRD
parameters that are found to be time-varying. In actual pan-
demic tracking, these time-varying parameters, say the repro-
duction number, may help to see the implications of pandemic
management policy decisions or the pandemic spread in the
real time. As per the data available up to October 17, 2020,
the proposed model estimates the final epidemic size in India
as 9596498. This optimistic value is supported by the fact
that R0 < 1 by the second week of October, 2020. How-
ever, this estimation will be valid only if the new infected pa-
tients follow the quarantine conditions, and the social distanc-
ing norms are maintained. The estimation might also change
when the unrestricted international travel will resume. The
performance of the proposed model is far superior than its
counterparts existing in the literature.
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