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ABSTRACT

Distance-based dynamic texture recognition is an important

research field in multimedia processing with applications

ranging from retrieval to segmentation of video data. Based

on the conjecture that the most distinctive characteristic of a

dynamic texture is the appearance of its individual frames,

this work proposes to describe dynamic textures as kernel-

ized spaces of frame-wise feature vectors computed using

the Scattering transform. By combining these spaces with

a basis-invariant metric, we get a framework that produces

competitive results for nearest neighbor classification and

state-of-the-art results for nearest class center classification.

Index Terms— Distance learning, Video signal process-

ing, Feedforward neural networks, Image texture analysis

1. INTRODUCTION

The term temporal or dynamic texture refers to a class of vi-

sual processes consisting of a temporally evolving image tex-

ture. Typical examples of dynamic textures are ocean waves,

flags moving in the wind, or flames of a bonfire. In order

to classify, retrieve or cluster dynamic textures, but also for

purposes such as spatial or temporal video segmentation or

identifying patterns in a dynamic scene, an expressive way to

represent dynamic textures and to measure similarity between

them is of great help. Since a dynamic texture is defined by

the appearance of its individual frames, as well as the dynam-

ics of their temporal progression, descriptors usually aim at

capturing the behavior along the spatial and temporal axes.

Quite often, the dynamics are of considerably lesser im-

portance for distinguishing videos of temporal textures than

the appearance of individual frames. For instance, to tell apart

a forest from an ocean, we do not need to consider, whether

the video was shot in stormy or calm weather conditions. In

fact, dynamic textures can be usually easily recognized by ob-

serving isolated video frames. In this work, we therefore ne-

glect the issue of appropriately describing the temporal transi-

tions. Instead, we treat each dynamic texture as a set of image

feature vectors describing individual frames. We then proceed
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to model each set as a finite subspace of a kernel feature space

that is represented as a coefficient matrix of an orthogonal ba-

sis. Since one vector space is spanned by an infinite number

of orthogonal bases, we employ a basis-invariant metric.

This work incorporates two observations from previous

publications. The first observation is that when we apply

Scattering transform to a texture image, its coefficient dis-

tributions constitute an expressive feature representation that

performs well on recognition tasks when combined with prob-

ability product kernels [1]. The second observation is that

visual processes can be well described as spaces computed

by applying Kernel PCA [2] on distribution-based descriptors

of the video frames, when employed together with a distance

measure that is invariant to the bases of said spaces [3, 4].

The contributions of this work are as follows. First, we pro-

pose a feature extraction method that performs a Scattering

transform on an image texture and computes a histogram from

each Scattering subband. These histograms are then concate-

nated into a Scattering histogram vector and a Mercer kernel

on pairs of these vectors is defined. Second, we introduce an

algorithm which expects a dynamic texture video and returns

a coefficient matrix that describes the kernel subspace con-

taining the Scattering histogram vectors computed from the

video. Next, we define a metric on pairs of these coefficient

matrices. Finally, we describe an algorithm for computing

Fréchet means [3] on finite sets of coefficient matrices with

respect to the defined metric.

The classical approach to dynamic texture recognition

is by first computing a linear autoregressive state-space

model, and then defining a distance measure [5] on its pa-

rameters. Another common approach is to use multi-scale

spatio-temporal filter responses of the dynamic texture video,

e.g. the 2D-T Curvelet Transform [6] or the Spatio-temporal

receptive fields [7]. Beyond that, a considerable number of

recognition methods in the recent years is based on the idea to

collect features that are designed for 2D images from a video,

by applying them in three orthogonal planes (TOP) of the

video cuboid [8, 9]. Methods based on computing sparse rep-

resentations have also demonstrated remarkable performance

[10]. Interestingly, while neural networks play a significant

role in visual process recognition nowadays [11], classical

end-to-end deep learning is more an exception than the rule.
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Fig. 1. Scattering tree produced by successive application of

Ψ on the input signal x. Lowpass signals are depicted as white

nodes. Once the tree is computed, only the white nodes are

kept as the representation of the input signal.

One reason for this might be that even today it is not straight-

forward to collect enough dynamic textures sequences to train

a deep neural net with a superior performance.

2. SCATTERING SUBBAND HISTOGRAMS

Simply put, a Scattering transform [12] is a convolutional

neural net (CNN) with fixed weights and without channel

recombination, where the absolute value operator is consis-

tently used as the activation function. Consider an operator

ΨJ : L2 → L2J+1
that creates a subband decomposition of

the input, and applies the absolute value operator to each non-

lowpass output. The first element of the output tuple, written

as ΨJ [x]0 in the following, is a lowpass representation of the

input. The other signals ΨJ [x]1, . . . ,Ψ
J [x]J contained in the

tuple can be subjected to the operator again, yielding another

J subband decompositions with the absolute value applied to

the bandpass signals. This procedure can be repeated sev-

eral times, yielding a tree structure like in Figure 1, where the

black circles denote the absolute values of bandpass signals

and the white circle denote lowpass signals. The M -depth

Scattering transform of a signal x is the collection of (only)

the lowpass signals created by constructing a tree with M lay-

ers. These signals are referred to subbands in the following.

Each Scattering subband of x has the form

Sj1,...,jm [x] = ΨJm+1[ΨJm [· · · [ΨJ1[x]j1 ] · · · ]jm ]0, (1)

with m ∈ {1, . . . ,M − 1} and jm ∈ {1, . . . , Jm}. The

Scattering transform of x results in a tuple containing all

NBands = 1 +
∑M−1

m=1

∏m
i=1 Ji subbands. For the subband at

the top layer (m = 0), let us fix the notation S[x] = ΨJ1[x]0.

As an optional step, the Scattering subbands can be normal-

ized [1, 13] in order to decorrelate them. Let us define the

normalized Scattering transform as a collection of subbands

S̄j1,...,jm with

S̄[x] = S[x], S̄j1 [x] = Sj1 [x]/avg(x), (2)

where avg denotes the signal average, and

S̄j1,...,jm [x] = Sj1,...,jm [x]/Sj1,...,jm−1
[x] (3)

for m > 1.

In [1], a texture retrieval method based on Scattering

subband distributions has been proposed, in which texture

images are described by the Weibull distribution parameters

computed from the coefficients of each subband via maxi-

mum likelihood. We can thus conclude that the subband-wise

distributions capture distinctive features from image textures.

The framework presented in the following is based on the

same feature extraction mechanism, but the distributions are

modeled as histograms. Given a dynamic texture sequence

x1, . . .xN of vectorized video frames, let us assume that

we have applied the Scattering transform to each one of the

frames and computed a histogram of Nbins from each sub-

band. To describe a video, we are thus given a matrix

H =
[

h1 · · · hN

]

∈ R
NBandsNbins×N , (4)

with Scattering histogram vectors as its columns, where

NBands is the number of Scattering subbands.

3. REPRESENTATION VIA KERNEL SUBSPACES

Assuming that the Scattering histogram vectors are an appro-

priate way to represent the individual frames, the entire set of

the columns in H should capture the essential information of

the whole dynamic texture, if we neglect the dynamics and

the order of the frames. What we aim for is thus a compact

way to represent this set. However, the classical approach of

performing a principal component analysis (PCA) and rep-

resenting H by the principal subspace would likely fail, be-

cause low-dimensional linear vector spaces are not a fitting

model for sets of histograms, which is why histogram data is

often mapped to a feature space using the kernel trick, prior

to further processing [4]. Following the insights from [1], we

employ the Bhattacharyya kernel which, for two probability

distributions p1, p2 over the sample space Ω, is defined as

κBht(p1, p2) =

∫

Ω

√

p1(ω)p2(ω) dω. (5)

Let us make the (simplifying) assumption that the coefficient

distributions of different Scattering subbands are indepen-

dent. Then we can evaluate the Bhattacharyya kernel on a

pair of Scattering histogram vectors η1,η2 by computing

κ(η1,η2) =

NBands−1
∏

i=0

Nbins
∑

j=1

√

η1(iNbins+j)η2(iNbins+j). (6)

For the sake of readability, we fix the notation

κ : RNBandsNBins×N1 × R
NBandsNBins×N2 → R

N1×N2 (7)

with κ(H1,H2)(i,j) = κ(H1(:,i),H2(:,j)), for the matrix-

wise application of κ.

Using κ and H ∈ R
NBandsNBins×N , we could now pro-

ceed to apply Kernel PCA to compute a low-dimensional sub-

space of a feature space corresponding to κ. Kernel PCA



is typically carried out by performing truncated Eigenvalue

or Singular Value Decomposition (SVD) of the Gram matrix

κ(H ,H) and returns a coefficient matrix C ∈ R
N×n that,

together with κ and H , parameterizes an orthogonal basis

spanning the n-dimensional principal subspace of the feature

space representation of H [2]. The orthogonality of a basis

described by a parameter pair C,H can be easily verified us-

ing the condition

C⊤κ(H ,H)C = In. (8)

However, storing the whole matrix H for each video se-

quence is rarely sustainable. So in addition to performing

Kernel PCA, we include a Nyström interpolation [14] step to

approximate the computed subspace by a small subset of Ñ
columns of H , for which the inequality n ≤ Ñ < N holds.

To do so, we collect Ñ representative columns from H in

a matrix H̃ ∈ R
NBandsNBins×Ñ and choose the coefficient

matrix C̃ , such that an appropriate metric between C,H and

C̃, H̃ , is minimized. We choose the metric

1

2

(

tr(C⊤
1 κ(H1,H1)C1) + tr(C⊤

2 κ(H2,H2)C2)
)

− tr(C⊤
1 κ(H1,H2)C2)

(9)

which measures the squared error between the basis vec-

tors in the feature space. Since we can assume that both

involved bases are orthogonal, i.e. Eq. (8) holds for C1.H1

and C2.H2, we can write it as

dse(C1,H1;C2,H2)
2 = n− tr(C⊤

1 κ(H1,H2)C2). (10)

We thus define

C̃ = argmin
C′ s.t. C′⊤κ(H̃,H̃)C′=In

dse((C,H), (C ′, H̃))2. (11)

Due to Eq. (8), the solution of Eq. (11) must have the form

C̃ = ŨΛ̃
−1/2W , where Ũ , Λ̃ denote the SVD factors of

κ(H̃, H̃) and W ∈ R
Ñ×n is a matrix with orthogonal

columns, i.e. W⊤W = In. Eq. (11) thus boils down to

Ŵ = argmax
W s.t. W⊤W=In

tr(C⊤κ(H , H̃)ŨΛ̃
−1/2W ), (12)

which can be solved using the SVD. Computing the subspace

parameters of a dynamic texture is described in Algorithm 1.

4. NUCLEAR DISTANCE ON KERNEL SUBSPACES

Note that the parameters computed by Algorithm 1 are not

unique. Consider a parameter pair C,H describing an or-

thogonal basis in the feature space. Then, all pairs in the set

{(CQ,H) |Q ∈ O(n)} (13)

describe different orthogonal bases of the same space. A se-

mantically meaningful distance measure on kernel subspaces

Algorithm 1: Kernel Subspace Computation

Input: Video Sequence X , Histogram size NBins,

Sampling size Ñ , Traget dimension n
1 S ← ST(X); // Scattering transform

2 H ← hist(S) ; // Subband histograms

3 H̃ ←
[

hi1 · · · hi
Ñ

]

; // Subsampling

4 U ,Λ,U ← SVD(κ(H ,H));

5 C ← U(:,1:n)Λ
−1/2
(1:n,1:n); // Kernel PCA

6 Ũ , Λ̃, ← SVD(κ(H̃ , H̃));

7 U ′, ,V ′ ← SVD(C⊤κ(H , H̃)ŨΛ̃
−1/2);

8 C̃ ← ŨΛ̃
−1/2V ′

(:,1:n)U
′⊤; // Eq. (12)

Output: Kernel Subspace parameters C̃, H̃

should be invariant to orthogonal transformations of C . This

is not the case for Eq. (10): Given a pair C,H , we observe

d2se(C,H ;−C,H) = 2n > 0 = d2se(C,H ;C,H), (14)

even though both C,H and −C,H pairs describe the same

subspace. We overcome this ambiguity by choosingQ always

such that d2se is minimized. We denote the result

min
Q∈O(n)

d2se(C1,H1;C2Q,H2) (15)

the kernelized Nuclear distance, as it is obtained by replacing

the trace in Eq. (10) by the nuclear norm. On two matrix pairs

C1,H1;C2,H2, the Nuclear distance is computed as

d2ncl(C1,H1;C2,H2) = n− ‖C⊤
1 κ(H1,H2)C2‖∗. (16)

Eq. (16) is actually a special case of the kernelized Alignment

distance [15, 3]. As such, it inherits its metric property on

the the equivalence classes in Eq. (13). Specifically, dncl, i.e.

the square root of Eq. (16) is symmetric, positive definite and

fulfills the triangle inequality [3].

5. FRÉCHET MEANS AS ABSTRACT AVERAGES

Certain scenarios, such as clustering or nearest class center

(NCC) classification require the notion of an average for finite

sets of descriptors. Sadly, the set of kernel subspaces with

dimension n is a non-trivial manifold, which means we can

not compute a mean using the arithmetic average. Thanks

to Eq. (16), we are operating on a metric space, which means

that we can define averages using the Fréchet mean. Consider

a set {(Ci,Hi)}i∈{1,...,K}. Its Fréchet mean is given by

C̄, H̄ = argmin
C,H s.t.

C⊤κ(H,H)C=In

K
∑

i=1

d2ncl(C,H ;Ci,Hi). (17)

To solve the optimization problem, we follow the approach in

[3]. We approximate H̄ by computing N̄ cluster centers us-

ing the k-means algorithms on the columns of H1, . . . ,HK .



Next, C̄ is approached using an alternating scheme with two

steps for each iteration. The first step consists of finding a set

of orthogonal matrices Q1, . . . ,QK , such that

d2ncl(C̄, H̄;Ci,Hi) = d2se(C̄, H̄;CiQi,Hi), (18)

is fulfilled, for every i ∈ {1, . . . ,K}. This can be easily

achieved using a projection onto the orthogonal group. The

second step is approximating C̄ by computing

argmin
C s.t. C⊤κ(H̄,H̄)C=In

K
∑

i=1

d2se(C, H̄;CiQi,Hi). (19)

These two steps are repeated until convergence of the loss

function in Eq. (17). Due to space constraints, we omit pro-

viding pseudo-code for the final algorithm and refer the reader

to [3] for in-detail description of a similar algorithm.

6. EXPERIMENTS

The DynTex database [16] is a collection of high-resolution

RGB texture videos. Three splits have been compiled for clas-

sification benchmarking.

DynTex Alpha is composed of 60 videos divided into the

3 classes Sea (20 videos), Grass (20), and Trees (20)

DynTex Beta is composed of 162 videos divided into the

10 classes Sea (20), Vegetation (20), Trees (20), Flags (20),

Calm Water (20), Fountains (20), Smoke (16), Escalator (7),

Traffic (9) and Rotation (10).

DynTex Gamma is composed of 264 videos divided into

the 10 classes Flowers (29), Sea (38), Naked trees (25), Fo-

liage (35), Escalator (7), Calm water (30), Flags (31), Grass

(23), Traffic (9) and Fountains (37). Some works [6] use a

different version of this split containing 275 videos.

We perform 1-NN (Nearest Neighbor) and NCC classi-

fication experiments on the three splits. To this end, Ker-

nelized Scattering Histogram Spaces (KSHS) are computed

from each video using Algorithm 1 with n = 5, Ñ = 15.

The Scattering transform is computed using Kymatio [17]

on CUDA with the arguments L=4, J=4. Histograms with

NBins = 20 are calculated, from both regular and normalized

(KNSHS) subbands. For NCC classification, a Fréchet mean

is computed from each class using the procedure described in

Section 5 with N̄ = 15 and the leave-one-out protocol pro-

posed in [6]. Parameters were chosen using grid search. Code

for reproducing the experimental results is available online1.

Table 1 shows the 1-NN and NCC classification results

in comparison with LBP-TOP [8, 11], PCANet-TOP [18],

Dynamic Fractal Spectrum (DFS) [19, 10], Spatiotemporal

Curvelet Transform (2D+T Curvelet) [6], Orthogonal Tensor

Dictionary Learning (OTDL) [10] Completed Local Structure

Patterns in Three Orthogonal Planes (CLSP-TOP) [9], Spatio-

temporal Receptive Fields (STRF N-jet) [7], Binarized 3D

1https://github.com/alexandersagel/kshs

Alpha Beta Gamma

1-NN NCC 1-NN NCC 1-NN NCC

LBP-TOP 96.7 % - 85.8 % - 84.9 % -

PCANet-TOP 96.7 % - 90.7 % - 89.4 % -

DFS - 83.6 % - 65.2 % - 60.8 %

2D+T C. - 85.0 % - 67.0 % - -*

OTDL - 86.6 % - 69.0 % - 64.2 %

CLSP-TOP 95.0 % - 92.0 % - 91.3 % -

STRF N-jet 100.0 % - 93.8% - 91.2 % -

B3DF 96.7 % 90.0 % 90.1 % 74.1 % -* -*

SOE-NET 98.3 % 96.7 % 96.9 % 86.4 % -* -*

SoB+Align 98.3 % 88.3 % 90.1 % 75.3 % 79.9 % 67.1 %

KSHS+Ncl. 98.3 % 96.7 % 88.9 % 88.3 % 88.6 % 86.7 %

KNSHS+Ncl. 98.3 % 96.7 % 93.2 % 90.1 % 91.3 % 89.8 %

*Reported results refer to 275-video version of DynTex Gamma.

Table 1. Classification rate on DynTex subsets

features (B3DF) [20] Spatiotemporal Oriented Energy Net-

work (SOE-NET) [21], and Systems of Bags with the Align-

ment Distance (SoB+Align) [3]. Results that have not been

reported or are not applicable are indicated by ’-’.

In line with the results in [1], normalizing the Scattering

coefficients improves the recognition performance: for no ex-

perimental setting, KNSHS performs worse than KSHS. One

explanation is that normalized coefficients are closer to fulfill-

ing the independence assumption made in Section 3. Overall,

KNSHS in combination with the Nuclear distance competes

well with current approaches. For the 1-NN classification,

it yields the same success rate as CLSP-TOP on the Gamma

split, and is outperformed by STRF N-jet and SOE-NET on

the Alpha and Beta split of DynTex. More remarkable are

the results for NCC classification. Not only does our method

yield higher success rates than many of the state-of-the-art ap-

proaches in literature, but it does so with a considerably small

performance gap with regards to 1-NN classification. This

could be due to using Fréchet means as class centers: Be-

cause of the triangle inequality, the distance from a test point

to the Fréchet mean of a set is always a good approximation

of the distance from the test point to any point in said set [3].

Hence, NCC should yield similar results as 1-NN.

7. CONCLUSION

In this work, we have proposed a Scattering-based feature ex-

traction method for dynamic textures using Kernel PCA, and

described a distance that accounts for non-uniqueness of the

extracted features. Additionally, we have briefly outlined a

procedure to compute abstract averages from finite sets of

such features. We have evaluated the proposed method on

1-NN and NCC classification and have observed state-of-the-

art results for the latter scenario. The capability of computing

expressive features and measure the distance between pairs

thereof, in addition to computing abstract averages, are also

useful in related recognition tasks, such as retrieval, clustering

or even segmentation of video data.
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