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ABSTRACT
Spiking Neural Networks (SNNs) offer a novel computational
paradigm that captures some of the efficiency of biological brains by
processing through binary neural dynamic activations. Probabilistic
SNN models are typically trained to maximize the likelihood of the
desired outputs by using unbiased estimates of the log-likelihood
gradients. While prior work used single-sample estimators ob-
tained from a single run of the network, this paper proposes to
leverage multiple compartments that sample independent spiking
signals while sharing synaptic weights. The key idea is to use
these signals to obtain more accurate statistical estimates of the log-
likelihood training criterion, as well as of its gradient. The approach
is based on generalized expectation-maximization (GEM), which
optimizes a tighter approximation of the log-likelihood using impor-
tance sampling. The derived online learning algorithm implements
a three-factor rule with global per-compartment learning signals.
Experimental results on a classification task on the neuromorphic
MNIST-DVS data set demonstrate significant improvements in
terms of log-likelihood, accuracy, and calibration when increasing
the number of compartments used for training and inference.

Index Terms— Spiking Neural Networks, Variational Learning,
Expectation Maximization, Neuromorphic Computing.

1. INTRODUCTION

Many of the recent breakthroughs towards solving complex tasks
have relied on learning and inference algorithms for Artificial Neural
Networks (ANNs) that have prohibitive energy and time consump-
tion for implementation on battery-powered devices [1, 2]. This has
motivated a renewed interest in exploring the use of Spiking Neu-
ral Networks (SNNs) to capture some of the efficiency of biological
brains for information encoding and processing [3]. Experimental
evidence has confirmed the potential of SNNs in yielding energy
consumption savings as compared to ANNs in many tasks of inter-
est, such as keyword spotting [4], while also demonstrating compu-
tational advantages in dynamic environments [5].

Inspired by biological brains, SNNs consist of neural units
that process and communicate over recurrent computing graphs via
sparse binary spiking signals over time, rather than via real num-
bers [6]. Spiking neurons store and update a state variable, the
membrane potential, that evolves over time as a function of past
spike signals from pre-synaptic neurons. Most implementations are
based on deterministic spiking neurons that spike when the mem-
brane potential crosses a threshold. These models can be trained via
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Fig. 1. Architecture of an SNN with exogeneous inputs and |X | = 4
visible and |H| = 5 hidden spiking neurons – the directed links
between two neurons represent synaptic dependencies, while the
self-loop links represent self-memory. Neurons and synapses run
K compartments with independent random number generators and
shared weights.

various approximations of back-propagation through time (BPTT).
The approximations aim at dealing with the non-differentiability of
the threshold function, and at reducing the complexity of BPTT,
making it possible to implement local update rules that do not re-
quire global backpropagation paths through the computation graph.

As an alternative, probabilistic spiking neural models based on
the generalized linear model (GLM) for spiking neurons can be
trained by directly maximizing a lower bound on the likelihood of
the SNN producing desired outputs [7–10]. This maximization over
the synaptic weights typically uses an unbiased estimate of the gra-
dient of the log-likelihood that leverages a single sample from the
output of the neurons. The resulting learning algorithm implements
an online learning rule that is local apart from a global learning
signal.

In this paper, as illustrated in Fig. 1, we explore a more general
SNN model in which each spiking neuron has multiple compart-
ments. Each compartment tracks a distinct membrane potential,
with all compartments sharing the same synaptic weights. This
architecture would provide no benefits with deterministic models,
since all compartments would produce the same outputs. This is not
the case under probabilistic neural models when the compartments
use independent random number generators to generate spikes. The
independent spiking outputs across the compartments can be lever-
aged in two ways: (i) during inference, the multiple outputs can be
used to robustify the decision and to quantify uncertainty; and (ii)
during training, these signals evaluate a more accurate estimate of
the log-likelihood learning criterion and of the corresponding gradi-
ent. In this paper, we propose a multi-sample online learning rule
that leverages a multi-compartment probabilistic SNN model. The
proposed approach adopts generalized expectation-maximization
(GEM) [11–14], and it uses multiple samples drawn independently
from the compartments to approximate the log-likelihood bound
via importance sampling. This yields a better statistical estimate of
the log-likelihood and of its gradient as compared to conventional
single-sample estimators. Experimental results on a neuromorphic
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data set demonstrate the advantage of leveraging multiple compart-
ments in terms of accuracy and calibration [15].

2. MULTI-COMPARTMENT SNN MODEL

A K-compartment SNN model is defined as a network connecting a
set V of spiking neurons via an arbitrary directed graph, which may
have cycles, with each neuron and synapse havingK compartments.
As illustrated in Fig. 1, each neuron i ∈ V receives the signals emit-
ted by the set Pi of pre-synaptic neurons connected to it through
directed links, known as synapses. Each kth synaptic compartment
for a synapse (j, i) processes the output of the kth compartment of
pre-synaptic neuron j; and its output is in turn processed by the kth
compartment of the post-synaptic neuron i, for k = 1, 2, . . . ,K.

Following a discrete-time implementation of the probabilistic
generalized linear neural model (GLM) for spiking neurons [9, 16],
at any time t = 1, 2, . . ., the kth compartment of spiking neuron i
outputs a binary value ski,t ∈ {0, 1}, with “1” representing the emis-
sion of a spike, for k = 1, . . . ,K. We collect in vector skt = (ski,t :
i ∈ V) the spikes of the kth compartment emitted by all neurons V
at time t, and denote by sk≤t = (sk1 , . . . , s

k
t ) the spike sequences of

all neurons processed by the compartment up to time t. Each post-
synaptic neuron i receives past input spike signals skPi,≤t−1 from
the set Pi of pre-synaptic neurons through the kth compartment of
synapses. With some abuse of notation, we include exogeneous in-
puts to a neuron i in the set Pi of pre-synaptic neurons, see Fig. 1.

For the kth compartment, independently of the other compart-
ments, the instantaneous spiking probability of neuron i at time t,
conditioned on the value of the membrane potential, is defined as

pθi(s
k
i,t = 1|uki,t) = σ(uki,t), (1)

where σ(x) = (1 + exp(−x))−1 is the sigmoid function and the
membrane potential uki,t summarizes the effect of the past spike
signals skPi,≤t−1 from pre-synaptic neurons and of its past activity
ski,≤t−1. Note that each compartment stores and updates a distinct
membrane potential. From (1), the negative log-probability of the
output ski,t corresponds to the binary cross-entropy loss

− log pθi(s
k
i,t|uki,t) = `

(
ski,t, σ(u

k
i,t)
)

:= −ski,t log σ(uki,t)− (1− ski,t) log(1− σ(uki,t)). (2)

The joint probability of the spike signals sk≤T up to time T is de-
fined using the chain rule as pθ(sk≤T ) =

∏T
t=1

∏
i∈V pθi(s

k
i,t|uki,t),

where θ = {θi}i∈V is the model parameters, with θi being the local
model parameters of neuron i as detailed below.

The membrane potential is obtained as the output of spatio-
temporal synaptic filter at and somatic filter bt. Specifically, each
synapse (j, i) from a pre-synaptic neuron j ∈ Pi to a post-synaptic
neuron i computes the synaptic trace −→s kj,t = at ∗ skj,t, while the
somatic trace of neuron i is computed as ←−s ki,t = bt ∗ ski,t, where
we denote by ft ∗ gt =

∑
δ fδgt−δ the convolution operator. The

membrane potential uki,t of neuron i at time t is finally given as the
weighted sum

uki,t =
∑
j∈Pi

wj,i
−→s kj,t−1 + wi

←−s ki,t−1 + ϑi, (3)

where wj,i is a synaptic weight of the synapse (j, i); wi is the self-
memory weight; and ϑi is a bias, with the local model parameters
θi = {{wj,i}j∈Pi , wi, ϑi} being shared among all compartments
of neuron i.

3. TRAINING

During training, the shared model parameters θ are adapted jointly
across all compartments with the goal of maximizing the log-
likelihood that a subset X ⊆ V of “visible” neurons outputs desired
spiking signals. The desired samples are specified by the training
data as spiking sequences x≤T for some T > 0, in response to given
exogeneous inputs. Mathematically, the maximum log-likelihood
(ML) problem can be written as

min
θ
− log pθ(x≤T ), (4)

where pθ(x≤T ) is the probability of the desired output for any of
the compartments. To evaluate the log-likelihood log pθ(x≤T ) =
log
∑
h≤T

pθ(x≤T ,h≤T ), one needs to average over the spiking
signals h≤T of “hidden”, or latent, neurons in the complement set
H = V \ X .

In this section, we propose an online learning rule that lever-
ages the available K compartments by following the generalized
expectation-maximization (GEM) introduced in [14]. Throughout
the paper, we define the temporal average operator of a time se-
quence {ft}t≥1 with some constant κ ∈ (0, 1) as 〈ft〉κ = κ ·
〈ft−1〉κ + ft with 〈f0〉κ = 0.

GEM-VLSNN: Generalized EM Variational online Learning
for SNNs. Following the principles of GEM [11–14], given the cur-
rent iterate θold, we tackle the problem of minimizing at each time t
the following approximate upper bound on the objective in (4) [9,11]

Lx≤t
(θ,θold) = Epθold

(h≤t|x≤t)

[ t−1∑
t′=0

γt
′∑
i∈V

`
(
si,t−t′ , σ(ui,t−t′)

)]
,

(5)

where γ ∈ (0, 1) is a discount factor and pθold(h≤t|x≤t) is the pos-
terior distribution. The bound is exact for γ = 1, and we have added
the discounted average in (5) in order to obtain online rules. The pos-
terior distribution pθold(h≤t|x≤t) is generally intractable, and, fol-
lowing [7–9], we approximate it with the “causally conditioned” dis-
tribution pθH

old
(h≤t||x≤t−1), where we have used the notation [17]

pθH(h≤t||x≤t−1) =

t∏
t′=1

∏
i∈H

pθi(hi,t′ |ui,t′), (6)

and we have denoted by θX = {θi}i∈X and θH = {θi}i∈H
the collection of model parameters for visible and hidden neu-
rons respectively. Then, following GEM, we use K indepen-
dent samples h1:K

≤t = {hk≤t}Kk=1 drawn from the distribution
pθH

old
(h1:K
≤t ||x≤t−1) =

∏K
k=1 pθH

old
(hk≤t||x≤t−1) to carry out the

marginalization via importance sampling. Accordingly, we approxi-
mate the loss function (5) as

Lx≤t
(θ,θold)

≈ 1

K

K∑
k=1

pθold(h
k
≤t|x≤t)

pθH
old
(hk≤t||x≤t−1)

t−1∑
t′=0

γt
′∑
i∈V

`
(
ski,t−t′ , σ(u

k
i,t−t′)

)
≈

K∑
k=1

σkSM

(
vθX

old,t

)
·
t−1∑
t′=0

γt
′∑
i∈V

`
(
ski,t−t′ , σ(u

k
i,t−t′)

)
:= LKx≤t

(θ,θold). (7)

The approximate upper bound LKx≤t
(θ,θold) in (7) is obtained by



Fig. 2. Illustration of the training scheme for a K-compartment
SNN. A central processor (CP) collects information from all com-
partments of the visible neurons X , with entailing a unicast com-
munication load CN→CP; computes importance weights of compart-
ments; and sends them to all neurons, with entailing a broadcast
communication load CCP→N, in order to guide the update of model
parameters θ.

approximating the importance weights of the samples as

1

K
·
pθold(h

k
≤t|x≤t)

pθH
old
(hk≤t||x≤t−1)

=
pθold(x≤t,h

k
≤t)

K · pθold(x≤t) · pθH
old
(hk≤t||x≤t−1)

(a)
≈

pθX
old
(x≤t||hk≤t−1)∑K

k′=1 pθX
old
(x≤t||hk′≤t−1)

(b)
≈ σkSM

(
vθX

old,t

)
,

(8)

where in (a) we have used a Monte Carlo (MC) estimate with K
samples h1:K

≤t for pθold(x≤t) ≈ 1
K

∑K
k′=1 pθX

old
(x≤t||hk

′
≤t−1); and

in (b) we have defined vθX
old,t

= (v1
θX

old,t
, . . . , vK

θX
old,t

) as the vector of
log-probabilities of the samples at time t by using temporal averag-
ing operator as

vkθX
old,t

=
〈
log pθX

old
(x≤t||hk≤t−1)

〉
κ

(9)

with some constant κ ∈ (0, 1), and have defined the SoftMax func-
tion σSM(·) as

σkSM

(
vθX

old,t

)
=

exp
(
vk
θX

old,t

)
∑K
k′=1 exp

(
vk
′

θX
old,t

) , for k = 1, . . . ,K. (10)

We note that the resulting MC estimate can better capture the inher-
ent uncertainty of the true posterior distribution more precisely with
a larger K.

An online local update rule, which we refer to as GEM Vari-
ational online Learning for SNNs (GEM-VLSNN), is obtained by
minimizing LKx≤t

(θ,θold) in (7) via stochastic gradient descent
in the direction of the negative gradient −∇θLKx≤t

(θ,θold). This
yields the update rule at time t

θ ← θ − η ·
K∑
k=1

σkSM
(
vθX,t

)
·
t−1∑
t′=0

γt
′∑
i∈V

∇θ`
(
ski,t−t′ , σ(u

k
i,t−t′)

)
,

with a learning rate η. As illustrated in Fig. 2, this rule can be im-
plemented as follows. At each time t = 1, 2, . . ., a central processor
(CP) collects the binary cross-entropy values {`

(
xi,t, σ(u

k
i,t)
)
}Kk=1

of all compartments from all visible neurons i ∈ X in order to com-

pute the importance weights of the compartments vθX,t as in (9),
and it computes the normalized weights using the SoftMax function
σSM(·) as in (10). Then, the SoftMax values {σkSM

(
vθX,t

)
}Kk=1 are

fed back from the CP to all neurons V (both visible X and hiddenH
neurons). Finally, for each neuron i ∈ V , GEM-VLSNN updates the
local model parameters θi as

wj,i ← wj,i − η ·
K∑
k=1

σkSM
(
vθX,t

)
·
〈(
ski,t − σ(uki,t)

)
· −→s kj,t−1

〉
γ
,

wi ← wi − η ·
K∑
k=1

σkSM
(
vθX,t

)
·
〈(
ski,t − σ(uki,t)

)
· ←−s ki,t−1

〉
γ
,

ϑi ← ϑi − η ·
K∑
k=1

σkSM
(
vθX,t

)
·
〈
ski,t − σ(uki,t)

〉
γ
,

(11)

where we have used standard expressions for the derivatives of the
cross-entropy loss [9, 18], and we set ski,t = xi,t for visible neuron
i ∈ X and ski,t = hki,t for hidden neuron i ∈ H.

Interpreting GEM-VLSNN. The update rule (11) follows a
three-factor format in the sense that it can be written as [19]

wj,i ← wj,i + η ·
K∑
k=1

learning signalk ·
〈
prekj · postki

〉
, (12)

where η is the learning rate. The three-factor rule (12) sums the con-
tributions from the K compartments, with contribution of the kth
compartment depending on three factors: prekj and postki respec-
tively representing the activity of the pre-synaptic neuron j and of
the post-synaptic neuron i processed by the compartment, and finally
learning signalk determines the sign and magnitude of the contri-
bution of the compartment to the learning update. The update rule
(12) is hence local, with the exception of the learning signal. Specif-
ically, for each neuron i, the gradients∇θiL

K
x≤t

(·) contain the post-
synaptic error ski,t−σ(uki,t) and post-synaptic somatic trace←−s ki,t−1;
the pre-synaptic synaptic trace −→s kj,t−1; and the global learning sig-
nals {σkSM

(
vθX,t

)
}Kk=1. The importance weights computed using

the SoftMax function can be interpreted as the common learning sig-
nals for all neurons, with the contribution of each compartment be-
ing weighted by σkSM(vθX,t). From (9)-(10), the importance weight
σkSM(vθX,t) measures the relative effectiveness of the random real-
ization hk≤t of the hidden neurons within the kth compartment in
reproducing the desired behavior x≤t of the visible neurons.

Communication Load. As discussed, GEM-VLSNN requires
bi-directional communication. As seen in Fig. 2, at each time
t, unicast communication from neurons to CP is required in or-
der to compute the importance weights by collecting information
{{`
(
xi,t, σ(u

k
i,t)
)
}Kk=1}i∈X from all visible neurons. The result-

ing unicast communication load is CN→CP = K|X | real numbers.
The importance weights {σkSM

(
vθX,t

)
}Kk=1 are then sent back to

all neurons, resulting a broadcast communication load from CP to
neurons equal to CCP→N = K(|X | + |H|) real numbers. As GEM-
VLSNN requires computation of K importance weights at CP, the
communication loads increase linearly to K.

4. EXPERIMENTS

In this section, we evaluate the performance of the proposed scheme
GEM-VLSNN on classification task defined on the neuromorphic
data set MNIST-DVS [20]. For each pixel of an image, binary spik-



Fig. 3. Classification performance versus K, with 95% confi-
dence intervals accounting for the error bars: (Left) estimated log-
likelihood for the desired output (solid) and classification accuracy
(dashed) on test data set; (Right) broadcast communication load
CCP→N (solid) and number of spikes emitted by the hidden neurons
H per unit time (dashed) during training.

ing signals are recorded when the pixel’s luminosity changes by
more than a given amount, and no event is recorded otherwise. As
in [21,22], images are cropped to 26×26 pixels, and uniform down-
sampling over time is carried out to obtain T = 80 time samples
per each image. The training and test data set respectively contains
900 and 100 examples per each digit, from 0 to 9. We focus on
a classification task that classifies three digits {0, 1, 2}, where the
26 × 26 spiking signals encoding an MNIST-DVS image are given
as exogeneous inputs. The digit labels are encoded by the neurons
in the read-out layer, where the output neuron c ∈ X correspond-
ing to the correct label is assigned a desired output spiking signal
xc,t = 1, while the other neurons c′ 6= c are assigned xc′,t = 0 for
t = 1, . . . , T .

We consider a generic, non-optimized network architecture with
a set of |H| = 200 fully connected hidden neurons, all receiving
the exogeneous inputs as pre-synaptic signals, and a read-out visible
layer with |X | = 3 neurons, directly receiving pre-synaptic signals
from all exogeneous inputs and all hidden neurons without recurrent
connections between visible neurons. For synaptic and somatic fil-
ters, we choose a set of three raised cosine functions with a synaptic
duration of 10 time steps, following the approach [16]. We train a
K-compartment SNN by varying the number K, with the learning
rate η = 0.001 and time constants κ = γ = 0.9, which have been
selected after a non-exhaustive manual search.

For testing, a KI -compartment SNN with the trained weights
is used for inference. First, we measure the marginal log-likelihood
log pθ(x≤T ) for a desired output signal x≤T via the empirical av-
erage over 20 independent realizations of the hidden neurons. Next,
in order to evaluate the classification accuracy, we adopt a standard
majority decoding rule: for each compartment k = 1, . . . ,KI , the
output neuron with the largest number of output spikes for each xk≤T
is selected, obtaining the decision ĉk := argmaxc∈X

∑T
t=1 x

k
c,t;

then the index of the output neuron that receives the most votes
is set to the predicted class as ĉ = argmaxc∈X zc, where zc =∑KI

k=1 1{ĉk=c} is the number of votes for class c. Finally, we con-
sider calibration as a performance metric. To this end, the prediction
probability p̂, or confidence, of a decision is derived from the vote
count variables z = (zc : c ∈ X ) using the SoftMax function, i.e.,
p̂ = σĉSM

(
z
)
. The expected calibration error (ECE) measures the

difference in expectation between confidence and accuracy, i.e.,

ECE = Ep̂
[∣∣P(ĉ = c|p̂ = p

)
− p
∣∣]. (13)

In (13), the probability P
(
ĉ = c|p̂ = p

)
is the probability that ĉ

Fig. 4. Estimated log-likelihood, classification accuracy and ECE
(13) of test data set as a function of processed time samples for dif-
ferent values K = 1, 20 of compartments in training. The accuracy
and ECE are measured using KI = 2 compartments. The shaded
areas represent 95% confidence intervals.

is the correct decision for inputs that yield accuracy p̂ = p. The
ECE can be estimated by using quantization and empirical averages
as detailed in [15].

To start, we trained a K-compartment SNN and tested the SNN
with KI = K compartments for K = 1, 2, 5, 10, 20. We chose
the model with the best performance on the test data set across the
iterations, and the corresponding estimated log-likelihood and accu-
racy are illustrated as a function of K in Fig. 3. It can be observed
that using more compartments K improves the testing performance
due to the optimization of increasingly tighter bound on the train-
ing log-likelihood. Fig. 3 also shows the broadcast communication
load CCP→N from CP to neurons increases linearly with K, with a
larger K implying a proportionally larger number of spikes emit-
ted by the hidden neurons. The proposed GEM-VLSNN is seen to
enable a flexible trade-off between communication load and energy
consumption [23], on the one hand, and testing performance, on the
other, by leveraging the availability of K compartments.

We then plot in Fig. 4 the estimated log-likelihood, accuracy, and
ECE (13) of test data set as a function of the number of training iter-
ations. An improved test log-likelihood due to a larger K translates
into a model that more accurately reproduces conditional probability
of outputs given inputs [15, 24], which in turn enhances calibration.
In contrast, accuracy can be improved with a larger K but only if
regularization via early stopping is carried out. This points to the
fact that the goal of maximizing the likelihood of specific desired
output spiking signals is not equivalent to maximizing the classifica-
tion accuracy.

5. CONCLUSION

This paper has explored a probabilistic spiking neural model in
which spiking neurons run multiple compartments, each generat-
ing independent spiking outputs, while sharing the same synaptic
weights across compartments. We have proposed a novel multi-
sample online learning algorithm for SNNs that leverages multiple
compartments to obtain a better statistical estimate of the log-
likelihood learning criterion and of its gradient. Experiments on
a neuromorphic data set have demonstrated improvements of per-
formance with increasing number of compartments in training and
inference. As future work, the proposed learning algorithm can be
extended to learning tasks with other reward functions instead of
log-likelihood, such as Van Rossum distance [10,25], or to networks
of spiking Winner-Take-All (WTA) circuits [26, 27], which process
multi-valued spikes.
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