
ADAPTIVE CONTENTION WINDOW DESIGN USING DEEP Q-LEARNING

Abhishek Kumar?, Gunjan Verma†, Chirag Rao†, Ananthram Swami†, and Santiago Segarra?

?Rice University, USA †US Army’s CCDC Army Research Laboratory, USA

ABSTRACT

We study the problem of adaptive contention window (CW) design
for random-access wireless networks. More precisely, our goal is to
design an intelligent node that can dynamically adapt its minimum
CW (MCW) parameter to maximize a network-level utility knowing
neither the MCWs of other nodes nor how these change over time.
To achieve this goal, we adopt a reinforcement learning (RL) frame-
work where we circumvent the lack of system knowledge with local
channel observations and we reward actions that lead to high util-
ities. To efficiently learn these preferred actions, we follow a deep
Q-learning approach, where the Q-value function is parametrized us-
ing a multi-layer perceptron. In particular, we implement a rainbow
agent, which incorporates several empirical improvements over the
basic deep Q-network. Numerical experiments based on the NS3
simulator reveal that the proposed RL agent performs close to opti-
mal and markedly improves upon existing learning and non-learning
based alternatives.

Index Terms— Wireless network, random access, contention
window, reinforcement learning, deep Q-learning.

1. INTRODUCTION

Wireless networks have become an essential part of our lives. We use
them for a wide range of purposes including video streaming, web
services, and file sharing. Moreover, the number of wireless devices
is constantly increasing, thus precipitating the urgent need for smart
and efficient access to the limited available spectrum. Though often-
times preferred due to their simplicity, conventional random access
protocols such as IEEE 802.11 lead to suboptimal spectrum utiliza-
tion and, more importantly, the performance of these protocols drops
significantly under dynamic and uncertain settings [1–3].

In this context, there has been growing interest over the last few
years in improving the management of wireless networks under un-
certain scenarios. A testament to this trend is the recently completed
DARPA spectrum collaboration challenge [4]. In this competition,
multiple wireless networks are present in the same geographical area
and, without full information about the protocols employed by each
network, they must interact with each other to efficiently utilize the
shared spectrum. Furthermore, recent works on heterogeneous net-
works [5–7] analyze the efficient spectrum management in the case
where nodes in the same network may follow different access proto-
cols.

Research was sponsored by the Army Research Office and was accom-
plished under Cooperative Agreement Number W911NF-19-2-0269. The
views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Office or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation herein.
Emails: {ak109, segarra}@rice.edu, {gunjan.verma.civ, chirag.r.rao.civ,
ananthram.swami.civ}@mail.mil.

Following this trend, we consider the scenario where nodes do
know the protocol followed by others but the uncertainty stems from
not knowing key parameters governing this protocol. In particular,
we consider a binary exponential backoff protocol with the mini-
mum contention window (MCW) being the key unknown parame-
ter to be designed. The proposed uncertain scenario is of empirical
relevance in cases where nodes may act unfairly by reducing their
MCW to acquire more channel access at the expense of others. In
this setting, we would rely on intelligent agents to adapt their own
MCW to restore fairness [3]. A similar situation might arise when a
new node joins a network and, without full knowledge of others’ pa-
rameters, the new node seeks to learn their dynamics and predict the
optimal MCW value at every time. We address this setting of param-
eter uncertainty by modeling the problem through a reinforcement
learning (RL) framework and adapting state-of-the-art deep learning
techniques for its solution.
Related work. The problem of optimal CW design has been studied
extensively over the past decades [8–14]. For example, authors in [8]
and [11] set the optimal MCW as a linear function of the estimated
number of active nodes. Furthermore, control-based [9] and game-
theoretic [10] approaches have been developed to avoid the need
for estimating the number of nodes. However, unlike our setting,
all these approaches assume that the nodes behave in a cooperative
manner by either choosing the same MCW or by not deviating from
a prespecified behavior. Another class of approaches relies on modi-
fications in the increase and decrease of the CW instead of finding an
optimal MCW [2,15,16]. For instance, under [15], a node multiplies
its current CW by a constant factor if packets collide and decreases it
by subtracting a constant value if the transmission is successful. Our
approach differs from this body of work since it does not deviate
from the current protocol structure and is learning-based as opposed
to being controlled by preset rules.

Motivated by the recent success of machine learning applied to
wireless networks [17–22], learning-based solutions have been pro-
posed for optimal distributed CW design [3,23–26]. Germane to our
approach is [24], where (non-deep) Q-learning is applied. However,
since the Q-function is learned as a table instead of parametrized
by a neural network, the authors deviate from the current protocol
and consider a different (much smaller) state-action space to enable
learning. Another relevant approach is presented in [3], which con-
siders a similar setting to ours but proposes a supervised learning
strategy based on a random forest algorithm. As such, it performs
well in a static scenario but fails to generalize to the cases where
other nodes vary their CW parameters, as we illustrate through ex-
periments.
Contribution. The contributions of this paper are twofold:
i) We formulate the problem of adaptive MCW design as an RL prob-
lem and implement a deep Q-learning architecture for its solution.
ii) Through NS3 simulations, we compare the proposed solution
with established baselines and demonstrate its near-optimal perfor-
mance across several scenarios.

ar
X

iv
:2

01
1.

09
41

8v
1

 [
ee

ss
.S

P]
 1

8
N

ov
 2

02
0

2. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a wireless network with N nodes transmitting packets
to a central access point. Nodes follow a binary exponential backoff
mechanism as mentioned in the IEEE 802.11 protocol for channel
access. The exponential backoff mechanism reduces collisions in
the channel by specifying the amount of time slots that each node
must wait before a transmission [1]. More precisely, before every
transmission, a node draws the number of slots to wait from a uni-
form distribution in (0, c − 1), where c is equal to the MCW ω if
the previous transmission was successful. After the first collision, c
is increased to 2ω to promote longer waiting times and reduce the
probability of further collisions. In general, c is chosen as 2jω after
j successive collisions, and saturates at a maximum permissible pre-
specified value. The network is assumed to be operating in a high-
load regime where every node has packets to transmit at all times.
Furthermore, all nodes are assumed to be in range of all other nodes
and there are no hidden nodes [1].

The network is observed in discrete intervals k = 1, 2, . . ., each
of duration T seconds. Within each time interval k, we assume the
MCW of all nodes ωk = [ωk0 , ω

k
1 , . . . , ω

k
N−1]> to be constant. As

described in Section 1, we consider the problem of CW design from
the point of view of an intelligent node (here node 0) that seeks to
optimize ωk0 without knowledge of the MCW of other nodes and,
even more challenging, in a setting where these values might change
from one interval k to the next. We model the MCW of every other
node ωki for i 6= 0 as a discrete-time stochastic process that can take
values in a finite state space Ω. In selecting the right MCW, node
0 must rely exclusively on local information. In particular, for each
interval k, apart from knowing its own ωk0 , node 0 observes the frac-
tion of time fk that it transmits without collision and the fraction of
time bk that other nodes transmit without collision. Based on this,
we define the observation vector ok = [fk, bk]>. Notice that ok is
a random vector that depends on ωk through the (stochastic) expo-
nential backoff mechanism. Lastly, to discuss optimal CW design
we need to focus on a notion of utility. In our case, we associate
interval k with the fairness utility given by

u(ok, N) = 1−
∣∣∣∣ fk

bk + fk
− 1

N

∣∣∣∣ . (1)

Intuitively, with N nodes in the network and under the high-load
assumption, the fair share of node 0 would be to transmit 1/N -th
of the total transmit time during interval k, while the actual propor-
tion of transmit time is given by fk/(bk + fk). The discrepancy
between these two numbers can be seen as a fairness loss and the
utility u(ok, N) subtracts this loss from a perfect utility of 1. Notice
that in computing (1), the total number of nodes N is assumed to be
known to (or accurately estimated by) node 0. With this notation in
place, we formally state our optimal CW design problem.

Problem 1. Given N and the history {ok, ωk0}K−1
k=1 , determine the

MCW ωK0 to maximize E
(∑∞

k=K α
k−Ku(ok, N)

)
.

At every discrete-time instant K, our intelligent node is faced
with an instance of Problem 1: it knows the size of the network N ,
its past decisions {ωk0}K−1

k=1 , and how these past decisions worked
out in terms of realized proportions of channel occupancy {ok}K−1

k=1 .
With this information, node 0 seeks to maximize future fairness. In
general, it seeks to maximize not only the immediate fairness at time
K but rather an infinite-horizon discounted sum, where α ∈ (0, 1)
establishes the relative importance of future utilities. Since ok is a
random vector, future utilities are random variables, as is their dis-
counted sum. Hence, the objective of node 0 is to maximize the

expected value of this discounted sum. In the next section, we frame
Problem 1 from an RL perspective and propose to solve it via deep
Q-learning. Finally, notice that even though in this paper we focus on
fairness, a similar problem can be postulated to maximize through-
put or other measures of interest by modifying the utility in (1).

3. DEEP Q-LEARNING FOR CW DESIGN

A first naive approach towards solving Problem 1 would be to try
to explicitly compute the expected value of the discounted utilities.
The first obstacle in achieving this is that we do not have access to
the underlying stochastic process regulating the evolution of ωki for
i 6= 0. Thus, we would first need to adopt a model for this stochastic
process – e.g., a Markov process with |Ω|N−1 states representing the
|Ω| possible choices of the N − 1 nodes – and then estimate from
data the parameters of this model such as the transition probability
matrix of the Markov process. Apart from being computationally
expensive, we would then face a second obstacle related to partial
observability, namely that node 0 does not have access to the true
state of the network ωk but rather to a real-valued observation ok

whose distribution depends on ωk. Inferring the transitions between
these hidden states further increases the complexity, indicating that
a classical model-based approach is not well-suited to solve Prob-
lem 1.

We turn our attention to a learning-based approach under the
framework of RL, where the lack of system knowledge is overcome
through methodical interactions with the system. In particular, in-
spired by its success on other problems pertaining to wireless net-
works [17–21], we focus on Q-learning. RL problems are modelled
using Markov decision processes where an agent learns by interact-
ing with an environment. At every time step k, the agent takes an
action ak that affects the state of the environment. The state changes
from sk to sk+1 and the agent gets a reward r(sk, ak). The action
taken by the agent at each state ak = π(sk) is given by the policy
π, a mapping from the set of states S to the set of actions A. The
goal of Q-learning is to find an optimal policy π∗ that maximizes the
long-term expected accumulated discounted reward. To do this, let
us define the optimal Q-function Q∗ : S × A → R where the value
Q∗(s, a) corresponds to the long-term reward of selecting action a
in state s and, from that point onward, following the optimal strategy
π∗. From this definition, it follows that

π∗(s) = argmax
a

Q∗(s, a). (2)

In our setting, the RL agent is the intelligent node 0, the action space
is given by the MCW choices, the reward is given by the utility in (1),
and we model the state as an M -memory buffer (or history) of the
local observations at node 0, i.e. {ok, ωk0}Kk=K−M+1. Having drawn
this analogy, it follows that if we can compute Q∗ then the solution
of Problem 1 is given by the optimal strategy π∗ as in (2).

The classical way of finding Q∗ is through a value iteration
method based on the Bellman equation [27]

Q(s, a)← Q(s, a) + η

(
r(s, a) + αmax

a′
Q(s′, a′)−Q(s, a)

)
,

(3)
where η is a pre-defined learning step-size, α is the discount factor in
Problem 1, and s′ is the realized state after s. It has been shown [27]
that under certain conditions on the step η and the frequency of vis-
its to the different states, the generic Q-function in (3) is guaranteed
to converge to Q∗, from where π∗ can be obtained [cf. (2)], seem-
ingly solving Problem 1. However, the convergence to Q∗ can be
extremely slow in practice.

Classical Q-learning performs well in settings where the state-
action space is small, since the table-like iterative procedure in (3)
updates each of the |S| × |A| pairs separately. By contrast, in our
setting we have an agent (node 0) whose action space can potentially
be large (different choices for the MCW) and, more critically, the
observations ok from the environment are real-valued. To extend
the benefits of Q-learning to our more challenging scenario we rely
on a deep Q-learning framework [28], where we parameterize the Q-
function as a neural network and update its parameters as opposed to
independent entry-wise updates of the Q-function. More precisely,
with θ representing the parameters of our neural network – usually
called a deep Q-network (DQN) – we seek to determine the optimal
parameters θ∗ such that Qθ∗(s, a) ≈ Q∗(s, a).

The specific implementation of deep Q-learning for the solution
of Problem 1 is illustrated in Fig. 1. At a generic time interval K,
the communication of packets to the access point is governed by the
choice of the MCW of every user. In the example, every user has
selected the same MCW at timeK (depicted by their blue states) but
this is not known by node 0. Instead, node 0 observes the operation
of the wireless network oK and, of course, knows its own ωK0 . The
concatenation of these observations for the last M time intervals is
used as the input to a trained neural network (Rainbow DQN). The
output of this neural network consists of a vector containing the Q-
values corresponding to every possible action (MCW) that node 0
can select. Node 0 will select as ωK+1

0 the MCW that attains the
largest Q-value at the output of the DQN [cf. (2)], while ωK+1

i for
i 6= 0 evolves following an unknown stochastic process. This same
process is repeated and node 0 relies again on the neural network to
select ωK+2

0 , and so on. As we illustrate in Section 4 for several
settings, the discounted sum of utilities yielded by the trained rain-
bow DQN with optimal parameters θ∗ is comparable with the best
attainable strategy when full knowledge of the system is available.

In order to find the optimal parameters θ∗ for our neural network
in the first place, we rely on the established strategy of experience
replay training; see Section 4 for implementation details. In a nut-
shell, inspired by the fixed-point solution of the classical iteration
in (3), we update the values of θ via gradient descent to minimize
the following loss

L(θ) = Es′
(
Qθ(s, a)−

(
r(s, a) + αmax

a′
Qθ(s

′, a)

))2

. (4)

It should be noted that, in our implementation, instead of using
a simple multi-layer perceptron to approximate the optimal Q-
function, we rely on recent modifications that have shown empirical
improvements in terms of training stability and amount of data
needed for training. Specifically, the rainbow agent [29] incorpo-
rates six improvements (double DQN, prioritized replay, duelling
networks, multi-step learning, distributional RL, and noisy nets) that
led to superior performance over vanilla DQN in gaming environ-
ments. We have also witnessed those benefits in the implementation
of deep Q-learning for CW design.

4. NUMERICAL EXPERIMENTS

To evaluate the performance of the proposed approach, we simulate a
wireless network using the NS3 simulator. Nodes in the network are
modelled to follow the IEEE 802.11b protocol with a constant data
rate of 1 Mbps. Furthermore, a constant packet size of 1400 bytes is
used and the observation interval length T is fixed as 20 seconds. Un-
less otherwise stated, the considered networks have N = 10 nodes.

We use two coupled feed forward neural networks as our rain-
bow DQN, each having four layers with 32 nodes per layer and

Fig. 1: Schematic view of our proposed deep RL agent. Node 0
relies on a rainbow DQN to select the MCW for the next time interval
based on historical local observations.

ReLU non-linearities.1 For all experiments, the discount factor is
set as α = 0.9 and the DQN is trained for 5000 episodes. At the
start of each episode, node 0 chooses an action uniformly from the
set of actions and the trajectory evolves for a specified number of
time steps. We fix the number of time steps in each episode to be
equal to 50. Rainbow DQN is implemented using the PyTorch [30]
library in Python and training is done using mini-batch gradient de-
scent with a batch size of 32. The buffer size for experience replay
is set to 10000.

In evaluating the performance of our proposed RL approach, we
compare it with the following five baselines:
i) Optimal design (OPT): This benchmark assumes full knowledge
of the underlying stochastic process and computes explicitly the ex-
pected value in Problem 1. Although unrealistic in practice, it sets
the upper bound of what is achievable by other methods.
ii) Random forest (RF) [3]: The classifier is trained using the local
observations {ok, ωk0}Kk=K−M+1 as input and ω∗K+1

0 as target la-
bels. The training labels ω∗K+1

0 are selected as the optimal actions
that maximize the fairness utility at the next time step. We fix the
number of trees as 15 and the depth of each tree as 5.
iii) Fairness index approach (FI) [2]: Node 0 computes a local fair-
ness index and follows a threshold-based policy to update its MCW.
We set this threshold as C = 1.5; see [2] for details.
iv) Optimal constant policy (CP): Just like for OPT, we assume
complete knowledge of the system. However, we restrain the design
of the MCW to be constant, i.e., it cannot change across time steps.
Improvements upon CP illustrate the value of an adaptive design.
v) Standard protocol (SP): Node 0 follows a static policy as men-
tioned in the IEEE 802.11 protocol with its MCW fixed at 32.

Before proceeding with the evaluation, it should be noted that FI
is not a predictive method but rather a reactive one in the sense that,
whenever the system deviates from fairness, node 0 would react and
try to restore a fair setting. Thus, it is bound to underperform in a
fast-changing setting. For a fairer comparison, we consider the case
where the update speed of FI is three times that of other methods,

1Code to replicate the numerical experiments here presented can be
found at https://github.com/kumarabhish3k/Rainbow-DQN-for-Contention-
Window-design.git.

https://github.com/kumarabhish3k/Rainbow-DQN-for-Contention-Window-design.git
https://github.com/kumarabhish3k/Rainbow-DQN-for-Contention-Window-design.git

OPT RL RF FI CP SP
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Fa
irn

es
s u

til
ity

p = 1
p = 0.75

(a)

OPT RL RF FI CP0.90

0.92

0.94

0.96

0.98

1.00

Fa
irn

es
s u

til
ity

p = 1
p = 0.75

(b)

0.93 0.94 0.95 0.96 0.97 0.98
Fairness utility

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

M = 1
M = 2
M = 3
M = 4

(c)

N = 5 N = 10 N = 20
0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Av
er

ag
e

fa
irn

es
s u

til
ity

OPT
RL

RF
FI

CP SP

(d)

Fig. 2: Performance evaluation of the proposed RL method. (a) Boxplots for fairness utility over 500 episodes of 50 time steps for the
six methods under consideration. A Markov process with p ∈ {0.75, 1} is considered for the evolution of the MCW of other nodes.
(b) Counterpart of (a) for the more complex stochastic process described in the text. SP is not shown due to its low relative performance,
achieving mean fairness utilities of 0.752 for both values of p. (c) Histograms of the utility attained by the RL agent for different lengths of
the memory buffer M . The respective mean utilities yielded by the increasing values of M are 0.941, 0.953, 0.973, and 0.971. (d) Average
network utility over 500 episodes for varying number of nodes N ∈ {5, 10, 20}.

i.e., FI updates its MCW thrice in every time slot as opposed to once
for the other methods (and zero times for CP and SP).

We first consider a simple scenario where the MCWs of all other
nodes follow a Markov process with only two states. In state 1,
ωi = 32 for all i 6= 0 and, in state 2, ωi = 128 for all i 6= 0. At
each discrete time step, the system switches states with probability
p, and we analyze the cases where p ∈ {0.75, 1}. The action space
of node 0 (potential MCW choices) is A = {32, 48, 64, 96, 128}.
Since the underlying process is Markovian, we consider a memory-
less implementation with M = 1 (cf. Fig. 1). Fig. 2a reveals that,
when p = 1, RL and RF achieve optimal performance even in the
absence of knowledge of the underlying Markov process. The ad-
vantage of RL over the supervised RF cannot be appreciated in this
deterministic process. The lack of adaptability of CP and SP makes
them lag behind and this fast-changing setting is not well suited for
FI even with updates three times faster. This latter effect is atten-
uated when p = 0.75 since the system tends to remain longer in a
given state. More importantly, for p = 0.75, RL is still able to learn
the optimal policy while the performance of RF is degraded. As a
consequence of the stochasticity of the process, similar observations
{ok, ωk0} can lead to drastically different optimal values for ω∗k+1

0 ,
thus confusing the supervised RF classifier.

As our second evaluation setting, we consider the case where the
MCWs of others follow a more complex process. More precisely,
we consider five states {sj}5j=1 where ωi = 2j−132 for all i 6= 0 at
state j. At each time step, the system transitions to the next state with
probability p, however, the next state follows an increasing trajectory
from s1 to s5 followed by a decreasing trajectory from s5 to s1, and
so on. In this sense, the next state does not only depend on the cur-
rent state but also on the previous one. To incorporate memory in the
predictive methods RL and RF, we consider M = 4. Furthermore,
we consider the action space A = {2j−132}5j=1 ∪ {2j−148}4j=1.
Fig. 2b reveals that RL achieves the closest utility to optimal among
all methods considered for both values of p. As expected, the sce-
nario where p = 0.75 is more challenging except for the reactive
method FI that benefits from slower changes in MCWs. Also notice
that the performance gap between OPT and RL is reasonable since
the former has perfect knowledge of the underlying system whereas
the latter must rely exclusively on local observations to gather un-
derstanding of the underlying dynamics. The absence of this gap
in Fig. 2a can be attributed to the simplicity of the model and the
smaller size of A.

Selecting M > 1 is essential for the RL agent to meaningfully

learn from experience in this more complex setting and, for the cases
where p < 1, having M > 2 can also be beneficial. This is illus-
trated in Fig. 2c, where we present the histograms of the fairness
utility attained by RL for different values of M over 500 episodes
for the case p = 0.75. There is a big increase in performance when
going from M = 1 to M = 2 in accordance with the memory of the
underlying system. Moreover, a similar jump is observed when go-
ing from M = 2 to M = 3. This is as expected since, for this value
of p, the transition to the next state might be delayed underscoring
the value of longer memory. The marginal gain forM = 4 decreases
and, in fact, a small loss is observed which can be attributed to the
fact that a larger model must be fit (larger dimension of input to the
rainbow DQN) without apparent modeling gain of the environment.

Finally, we consider the Markov process analyzed in our first
experiment but for p = 0.9 and vary the number of nodes N ∈
{5, 10, 20}. In Fig. 2d we portray the utility attained by the six con-
sidered methods averaged over 500 episodes as a function of the
network size. It can be observed that RL achieves utility closest to
optimal for all network sizes. As one might expect, the effect that an
intelligent node has in promoting fairness gets diluted in larger net-
works, thus, resulting in a smaller dynamic range of utilities across
methods when N = 20. In particular, the constant conservative
strategy of CP that selects a large MCW (ωk0 = 128 for all k) attains
a small suboptimality gap, but does not match the RL performance.
Note that RL outperforms the standard protocol for all values of N .
Indeed, the consistent near-optimality of the proposed RL approach
across network sizes is encouraging and motivates a range of related
future work.

5. CONCLUSIONS AND FUTURE WORK

We formulated the design of CWs in wireless networks as an RL
problem. Within this framework, we leveraged a state-of-the-art
DQN architecture to select the optimal value of the MCW in a se-
quential manner exclusively from local observations. Through NS3
simulations, we showed that the proposed RL agent achieves close-
to-optimal behavior and outperforms other learning-based and rule-
based methods. Ongoing work includes: i) the implementation of
RL for parameter learning on other access protocols, ii) the combi-
nation of RL with graph neural networks to accommodate the case
where every node is intelligent and can be trained based on its local
observations, and iii) the incorporation of more realistic topologies
that go beyond star connections to a common access point.

6. REFERENCES

[1] G. Bianchi, “Performance analysis of the IEEE 802.11 dis-
tributed coordination function,” IEEE J. Sel. Areas Commun.,
vol. 18, no. 3, pp. 535–547, Mar. 2000.

[2] B. Bensaou, Y. Wang, and C. C. Ko, “Fair medium access
in 802.11 based wireless ad-hoc networks,” in IEEE Wrkshp.
Mobile and Ad Hoc Netw. and Comp. (MoobiHOC), 2000, pp.
99–106.

[3] A. H. Y. Abyaneh, M. Hirzallah, and M. Krunz, “Intelligent-
CW: AI-based framework for controlling contention window
in WLANs,” in IEEE Int. Symp. on Dynamic Spectrum Access
Netw. (DySPAN), 2019, pp. 1–10.

[4] Defense Advanced Research Projects Agency, “Spectrum Col-
laboration Challenge (SC2),” https://www.darpa.mil/
program/spectrum-collaboration-challenge.

[5] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning
multiple access for heterogeneous wireless networks,” IEEE J.
Sel. Areas Commun., vol. 37, no. 6, pp. 1277–1290, 2019.

[6] Y. Yu, S. C. Liew, and T. Wang, “Carrier-sense multiple access
for heterogeneous wireless networks using deep reinforcement
learning,” in IEEE Wireless Commun. and Netw. Conf. Wrkshp.
(WCNCW), 2019, pp. 1–7.

[7] J. Tan, L. Zhang, Y.-C. Liang, and D. Niyato, “Deep rein-
forcement learning for the coexistence of LAA-LTE and WiFi
systems,” in IEEE Int. Conf. on Commun., 2019, pp. 1–6.

[8] I. Syed and B.-h. Roh, “Adaptive backoff algorithm for con-
tention window for dense IEEE 802.11 WLANs,” Mobile Info.
Syst., vol. 2016, 2016.

[9] Q. Xia and M. Hamdi, “Contention window adjustment for
IEEE 802.11 WLANs: a control-theoretic approach,” in IEEE
Int. Conf. on Commun., 2006, vol. 9, pp. 3923–3928.

[10] L. Chen, S. H. Low, and J. C. Doyle, “Random access game
and medium access control design,” IEEE/ACM Trans. Netw.,
vol. 18, no. 4, pp. 1303–1316, 2010.

[11] S. Chun, D. Xianhua, L. Pingyuan, and Z. Han, “Adaptive
access mechanism with optimal contention window based on
node number estimation using multiple thresholds,” IEEE
Trans. Wireless Commun., vol. 11, no. 6, pp. 2046–2055, 2012.

[12] K. Hong, S. Lee, K. Kim, and Y. Kim, “Channel condition
based contention window adaptation in IEEE 802.11 WLANs,”
IEEE Trans. Commun., vol. 60, no. 2, pp. 469–478, 2012.

[13] D.-J. Deng, C.-H. Ke, H.-H. Chen, and Y.-M. Huang, “Con-
tention window optimization for IEEE 802.11 DCF access con-
trol,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5129–
5135, 2008.

[14] A. Ksentini, A. Nafaa, A. Gueroui, and M. Naimi, “Determin-
ist contention window algorithm for IEEE 802.11,” in IEEE
Int. Symp. on Personal, Indoor and Mobile Radio Commun.,
2005, vol. 4, pp. 2712–2716.

[15] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang,
“MACAW: a media access protocol for wireless LANs,” ACM
SIGCOMM Computer Commun. Review, vol. 24, no. 4, pp.
212–225, 1994.

[16] N.-O. Song, B.-J. Kwak, J. Song, and M. Miller, “Enhance-
ment of IEEE 802.11 distributed coordination function with
exponential increase exponential decrease backoff algorithm,”
in IEEE Veh. Tech. Conf. (VTC),, 2003, vol. 4, pp. 2775–2778.

[17] O. Naparstek and K. Cohen, “Deep multi-user reinforcement
learning for dynamic spectrum access in multichannel wireless
networks,” in IEEE Global Commun. Conf. (GLOBECOM),
2017, pp. 1–7.

[18] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep
reinforcement learning for dynamic multichannel access in
wireless networks,” IEEE Trans. on Cognitive Commun. and
Netw., vol. 4, no. 2, pp. 257–265, 2018.

[19] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-
C. Liang, and D. I. Kim, “Applications of deep reinforcement
learning in communications and networking: A survey,” IEEE
Commun. Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174,
2019.

[20] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learn-
ing based resource allocation for V2V communications,” IEEE
Trans. Vehicular Tech., vol. 68, no. 4, pp. 3163–3173, 2019.

[21] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learn-
ing for dynamic power allocation in wireless networks,” IEEE
J. Sel. Areas Commun., vol. 37, no. 10, pp. 2239–2250, 2019.

[22] A. Chowdhury, G. Verma, C. Rao, A. Swami, and S. Segarra,
“Unfolding wmmse using graph neural networks for efficient
power allocation,” arXiv preprint arXiv:2009.10812, 2020.

[23] Y. Edalat and K. Obraczka, “Dynamically tuning IEEE
802.11’s contention window using machine learning,” in ACM
Int. Conf. on Modeling, Analysis and Simulation of Wireless
and Mobile Syst., 2019, pp. 19–26.

[24] A. Pressas, Z. Sheng, F. Ali, and D. Tian, “A Q-learning ap-
proach with collective contention estimation for bandwidth-
efficient and fair access control in IEEE 802.11p vehicular net-
works,” IEEE Trans. Vehicular Tech., vol. 68, no. 9, pp. 9136–
9150, 2019.

[25] Z. Ali, L. Giupponi, J. Mangues-Bafalluy, and B. Bojovic,
“Machine learning based scheme for contention window size
adaptation in LTE-LAA,” in IEEE Int. Symp. on Personal, In-
door, and Mobile Radio Commun. (PIMRC), 2017, pp. 1–7.

[26] S. Amuru, Y. Xiao, M. van der Schaar, and R. M. Buehrer, “To
send or not to send-learning MAC contention,” in IEEE Global
Commun. Conf. (GLOBECOM), 2015, pp. 1–6.

[27] R. S. Sutton and A. G. Barto, Introduction to Reinforcement
Learning, vol. 135, MIT press Cambridge, 1998.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level con-
trol through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[29] M. Hessel, J. Modayil, H. Van Hasselt, et al., “Rainbow: Com-
bining improvements in deep reinforcement learning,” arXiv
preprint arXiv:1710.02298, 2017.

[30] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative
style, high-performance deep learning library,” in Adv. in Neur.
Inf. Process. Syst. 32, pp. 8024–8035. 2019.

https://www.darpa.mil/program/spectrum-collaboration-challenge
https://www.darpa.mil/program/spectrum-collaboration-challenge

	1 Introduction
	2 System Model and Problem Statement
	3 Deep Q-Learning for CW design
	4 Numerical experiments
	5 Conclusions and future work
	6 References

