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ABSTRACT

To improve device robustness, a highly desirable key feature of a
competitive data-driven acoustic scene classification (ASC) system,
a novel two-stage system based on fully convolutional neural net-
works (CNNs) is proposed. Our two-stage system leverages on an
ad-hoc score combination based on two CNN classifiers: (i) the first
CNN classifies acoustic inputs into one of three broad classes, and
(ii) the second CNN classifies the same inputs into one of ten finer-
grained classes. Three different CNN architectures are explored to
implement the two-stage classifiers, and a frequency sub-sampling
scheme is investigated. Moreover, novel data augmentation schemes
for ASC are also investigated. Evaluated on DCASE 2020 Task 1a,
our results show that the proposed ASC system attains a state-of-the-
art accuracy on the development set, where our best system, a two-
stage fusion of CNN ensembles, delivers a 81.9% average accuracy
among multi-device test data, and it obtains a significant improve-
ment on unseen devices. Finally, neural saliency analysis with class
activation mapping (CAM) gives new insights on the patterns learnt
by our models.

Index Terms— Acoustic scene classification, robustness, con-
volutional neural networks, data augmentation, class activation map-

ping

1. INTRODUCTION

Acoustic scene classification (ASC) refers to the task of identify-
ing real-life sounds into environment classes, such as metro station,
street traffic, public square, etc. An acoustic scene sound contains
much information and rich content, which makes accurate scene pre-
diction difficult and an intriguing research problem at the same time.
In recent years, the organizers of the Detection and Classification
of Acoustic Scenes and Events (DCASE) challenge [1} 12, 3] pro-
vided both the benchmark data and a competitive platform to pro-
mote acoustic scene research and analysis. If we are to analyze top
ASC systems reported in the challenge, we will find that most of
them are built on the deep neural networks (DNNs) framework, and
the key ingredient of their success is the use of convolutional lay-
ers [4, 15016l [7, 8]. Advanced deep learning techniques, such as at-
tention mechanism [9} [10]], mix-up [[L1} [12], generative adversarial
network (GAN) and variational auto encoder (VAE) based data aug-
mentation [13| [14]], and deep feature learning [[15} [16} [17] can fur-
ther enhance ASC results. Although those ASC systems work well
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Fig. 1. The proposed two-stage ASC system.

on in-domain data, a generalization issue is observed in the presence
of audio recording collected in mismatched testing conditions, e.g.,
audio segments recorded with devices different from those used in
the training phase [2,|3]]. Device robustness is an inevitable issue in a
real production environment, and it is an important aspect to handle
when designing an ASC system.

In this work, we have three main contributions: (i) we propose
a novel two-stage ASC system; (ii) we investigate three different
fully CNN models in the proposed two-stage system; (iii) we explore
novel data augmentation strategies to reduce the device dependency
of our models. Our experimental results are gathered on the DCASE
2020 taskla development data set, and the proposed CNN models
achieve competitive results. Specifically, we attained a 79.4% over-
all ASC accuracy by ensemble of our three CNN models, and it ob-
tains a significant improvement on unseen devices when compared
with the baseline. The two-stage approach further boosts the accu-
racy of the ensemble model, and an ASC classification accuracy of
81.9% is attained. To better understand the key characteristics of our
CNN based systems, we carry out a neural saliency analysis based
on the class activation mapping (CAM) [18] on input data and the fi-
nal output. Such analysis shows that our CNN models actually focus
more on the meaningful audio segments containing acoustic events
for the final classification task, such as bird sounds in a park or car
horn sounds from street traffic, rather than leveraging on the back-
ground sound, as instead reported in [[19].

2. TWO-STAGE ASC SYSTEM DESIGN

2.1. Two-Stage Classification Procedure

Figure |I| shows the proposed two-stage ASC system. The overall
system consists of two independent classifiers and outputs the class
of the input audio scene choosing among ten classes. Different from



a more conventional one-stage ASC systems, which directly feed
acoustic features into the 10-class classifier and get final scene class,
an extra general classifier, namely a 3-class classifier is introduced,
which we expect it to enhance the classification process and leverage
the over-fitting issue of 10-class classifier.

In our setup, the 3-class classifier classifies an input scene au-
dio into one of three broad classes: in-door, out-door, and trans-
portation. This 3-class classification way is from our prior knowl-
edge that scene audios can be roughly categorized into such three
classes. The 10-class classifier is actually the main classifier, which
assigns a given input audio clip into one of ten target acoustic scene
classes, including airport, shopping mall, metro station, pedestrian
street, public square, street traffic, tram, bus, metro, park. Each au-
dio clip should belong to one of the three / ten classes. The final
acoustic scene class is chosen by the score fusion of those two clas-
sifiers. If we let C* and €2 denote the set of three broad classes, and
ten classes, respectively, and let F'* and F? indicate the output of
the first and second classifier, respectively. The final predicted class
Class(z) for the input z is:

Class(z) = argmax E}(z) * F(2),

q,(pEC!,geC?,pDq)

where p D ¢ means that p can be thought of a super set of q. For
example, transportation class is the super set for bus, tram, and metro
classes. Therefore, the probability of an input audio clip to be from
the public square scene is equal to the product of the probability of
out-door place, F, (), and that of public square, I (x).

2.2. CNN based Classifiers and Ensemble

Three CNN based models are investigated to build our ASC system,
namely Resnet, FCNN and fsSFCNN. Resnet is a deep residual neu-
ral network [20] empowered by residual learning. Residual learning
is a major efficient method to avoid gradient vanish issues while in-
creasing the depth of networks to allow high-level feature learning.
Our Resnet structure is based on the model in [21], which has no
frequency sub-sampling throughout the whole network. Each input
feature map is divided into two sub-feature mapping along the fre-
quency dimension. To be specific, if we have IV frequency bins, the
first N/2 and the second half are processed by two parallel stacked
residual layers. A global pooling layer and 10-way soft-max are used
to get the final utterance level prediction results.

The FCNN (fully convolutional neural network) model is a
VGG [22]]-like model which is built with 9 stacked convolutional
layers with small-size kernel. Each convolutional layer is followed
by a batch normalization operation and ReLU activation function.
Dropout is also used in order to alleviate over-fitting issues. Before
the final global average pooling layer, channel attention [23]] is ap-
plied to each output channel of the last layer. fsSFCNN (frequency
sub-sampling FCNN) is an extension of FCNN model which mainly
has 2 more convolutional layers and reduces max-pooling size in
the frequency axis. In our experiments we notice that it can help to
leverage over-fitting issue.

Finally, we build an ensemble using those CNN models and
make the final predictions. The output probabilities after softmax are
summed by equal weights, and then the scene class with the maxi-
mum posterior represents the final classification decision. For the
3-class classifier, only Resnet and FCNN are used; whereas, for the
10-class classifier, all three CNN models are used. The two-stage
score fusion is performed after model ensemble of classifiers in each
stage.

2.3. Data Augmentation Strategies for Training

When training the CNN models, 9 different data augmentation meth-
ods are investigated. The training for 3-class models and 10-class
models adopt the same data augmentation strategy. They can be cat-
egorized into two main classes: generating extra data or not.

Data augmentation strategies, which do not generate any extra
data, include: (i) Mixup [24], which randomly mixes data batches
with corresponding labels; (ii) Random cropping [21], which ran-
domly crops input features into ones with a smaller length along the
time axis; (iii) SpecAugment [25], which randomly masks input fea-
tures by zero along both time and frequency axes. SpecAugment is
performed on batch level, and the parameter of mask is set to 10%
of the time and frequency dimensions, respectively.

Strategies that generate extra data include: (i) Spectrum correc-
tion [26], which aims at transforming a given input spectrum to that
of a reference, possibly ideal, device. Different from the original
idea, we newly employ spectrum correction as a data augmentation
technique, where we create a reference device spectrum, by aver-
aging the spectrum from all training devices except that from device
A, and then correct the spectrum of each training waveform collected
with device A to obtain extra data. (ii) Reverberation with Dynamic
Range Compression (DRC), where we simulate more audio clips
from ‘new devices’ by introducing reverberation and applying DRC
- this data-agumentation solution is also new for ASC. Room im-
pulse responses [27]] are used to create reverberation into the device
A data, and DRC is then applied to dynamically compress the am-
plitude range. Room impulse responses and DRC settings are ran-
domly chosen to generate new training waveforms. (iii) Pitch shift,
where we randomly shift the pitch of each audio clip based on the
uniform distribution. (iv) Speed change, where we randomly change
the audio speed based on the uniform distribution. If output wave-
form is longer than the original one, extra samples are dropped from
the end, otherwise, padding is applied till attaining the same input
length. (v) Random noise, we randomly add Gaussian noise to each
training waveform. (vi) Mix audios, where we randomly mix two
audios from the same acoustic scene class. It’s device-independent
so it may help simulate a ‘new device’. Although the solutions from
(iii) to (vi) are not new strictly speaking, their application for ASC
device robustness has never been evaluated before.

3. EXPERIMENTS & ANALYSIS
3.1. Experimental Setup

All ASC systems are evaluated on the DCASE 2020 task1a develop-
ment data set [3]], which consists of ~14K 10-second single-channel
train audio clips and ~3K test audio clips recorded by 9 different
devices, including real devices A, B, C, and simulated device s1-s6.
Only device A, B, C, s1-s3 are in the training set; whereas, devices
s4-s6 are not available in the training phase. The greatest amount
of training audio clips are recorded with device A, namely over 10K
audio clips. In the test set, the number of audio clips from each
device is the same. For each input audio clip, a short-time Fourier
transform (STFT) with 2048 FFT points is applied, using a window
size of 2048 samples and a hop length of 1024 samples. The Li-
brosa [28] library is employed to extract log-mel filter bank (LMFB)
features. Log-mel deltas and delta-deltas without padding are also
computed, which finally generates an input feature tensor with size
of 423 x 128 x 3. Before feeding the input tensors into the CNN clas-
sifier, we perform utterance-level scaling operation to scale LMFB
coefficients into [0,1]. All deep models in this work are built with
Keras [29]]. Stochastic gradient descent (SGD) with a cosine-decay-
restart learning rate scheduler is used to train all deep models. Max-



Table 1. Classification accuracy of different 3-class models.

FCNN Ensemble
92.9 93.2

3-class Model [ Resnet
Acc. % | 914

Table 2. Overall results on DCASE 2020 taskla development set.
All proposed data augmentation strategies are used in all our models.

Table 3. Accuracy comparison of different data augmentation strate-
gies on Resnet. Mixup and random cropping are always employed.
‘sa’ indicates specAugment. ‘sc’ indicates spectrum correction. ‘r’
indicates reverberation with DRC. ‘aug’ indicates another four aug-
mentation methods, including pitch shift, speed change, random

noise and mix audios.

System A B&C s1-s3  s4-s6 | Avg.
% % % % %

Resnet 78.8 72.1 69.3 69.5 | 71.0

+sa 803 735 714 677 | 71.6

+sa+sc 79.1  75.0 70.7 689 | 72.0

+sa+sc+r 803 747 714 703 | 728

+sa+sc+r+aug™ | 83.0 76.1 736 710 | 74.6

System A B&C s1-s3  s4-s6 | Avg.
% % % % %
Baseline [3] 706 61.6 533 443 | 54.1
Suh et al. [30] - - - - 74.4
Gao et al. [31] - - - - 72.5
Liu et al. [32] - - - - 72.1
Koutini et al. [33] - - - - 73.3
Resnet 83.0 76.1 736 71.0 | 74.6
FCNN 873 795 757 73.0 | 76.9
fSFCNN 839 786 754 728 | 76.2
Ensemble 87.0 815 780 769 | 794
2-stage Resnet 84.5 786 762 764 | 71.7
2-stage FCNN 89.1 829 785 769 | 80.1
2-stage fSFCNN 839 812 786 764 | 79.0
2-stage Ensemble | 87.9 84.1 804 799 | 81.9

imum and minimum learning rates are 0.1, and 1e-5, respectivelyﬂ

3.2. Experimental Results

Table (1| shows the accuracy for 3-class classifiers, namely Resnet,
FCNN and Ensemble of these two models. The 3-class classifica-
tion task is relatively easy since an accuracy above 90% is attained
by each of the three models. FCNN shows a better accuracy than
Resent, and the ensemble of these two models allows a further boost
of the classification result. In the following experiments with the
two-stage system, we use Ensemble system as the 3-class classifier.

All main experimental results concerning the 10-class ASC task
are shown in Table 2] In the training set, device A data accounts for
around 75%, and device B, C, s1-s3 accounts for around 5%, respec-
tively. Thus, we can think of device A as a source device, and the
remaining ones as target devices. Based on the device information of
data, we divide the test set into four different subsets, which repre-
sent real source data (device A), real target data (device B & C), tar-
get seen-simulated data (device s1-s3), and target unseen-simulated
data (device s4-s6). The first row in Table |2| gives ASC accuracy
of the official baseline system [3]], which uses a two-fully connected
layer neural classifier, and OpenL3 [13]] to extract input audio em-
bedding. From baseline results, we can argue that good ASC ac-
curacy can be attained on real source data (device A), but a severe
performance drop is observed on other devices. Specifically, a severe
ASC accuracy drop is reported on unseen devices (s4-s6), where the
ASC accuracy is as low as 44.3%. Rows from 6th through 9th in Ta-
ble[2]display ASC results attained with a 10-class classifier. Resnet
attains a significant improvement on all test devices over the base-
line system. FCNN and fsFCNN outperform Resnet on all testing
scenarios, and FCNN achieves slightly better results than fsSFCNN.
Finally, the ensemble of these three models attains a 79.4% overall
ASC accuracy, which is a meaningful improvement compared to any
of the single-stage models reported in Table[2].

The experimental results of two-stage systems are shown in the

Code available: https://github.com/MihawkHu/DCASE2020_taskl

last four rows of Table 2] When comparing single-stage 10-class
classifier with the two-stage system, a significant improvement can
be attained. For example, comparing ‘Resnet’ with 2-stage Resnet’,
3.1% absolute improvement on overall accuracy is observed (74.6%
vs. 77.7%). Accuracies on all the test sets have indeed improved,
especially on the unseen-simulated test set (device s4-s6), where
a 5.4% absolute improvement is obtains. The overall absolute ac-
curacy gains with the proposed two-stage technique are 3.2% for
FCNN, 2.8% for fsFCNN, and 2.5% for the ensemble. The best
performance is attained by the two-stage of three models’ ensem-
ble, which achieves 81.9% overall ASC accuracy. Although the top
performance is still delivered on the source device A (87.9%), the
average ASC accuracy on the remaining test devices is above 79%,
which compares favourably against the baseline system. When com-
paring ASC accuracy between seen-simulated test set (device s1-s3)
and unseen-simulated test set (device s4-s6), we can argue that the
gap in performance is mild (80.4% vs. 79.9%), and they are close to
the overall average accuracy (80.4% vs. 79.9% vs. 81.9%). Those
results confirm the effectiveness of the proposed two-stage system
with respect to improving device robustness.

To better compare our results, the results of top-5 ranking sys-
tems (excluding ours) 3011311132, 133] are also listed from 2st to Sth
rows in Table[2] The experimental results clearly demonstrated that
the proposed two-stage system achieves a competitive performance
with all benchmark models.

3.3. Evaluation of Data Augmentation Strategies

We now investigate the effectiveness of different data augmenta-
tion strategies in combination. We test only the Resnet-based ASC
system to keep the experimental setup consistent. Table [3] shows
the classification accuracy attained with different data augmentation
schemes. It should be noted that mixup and random cropping are
always employed in the training phase.

When comparing the first two rows, we can see that specAug-
ment can boost the overall ASC accuracy from 71.0% to 71.6%, but
on unseen data the accuracy becomes worse (from 69.5% to 67.7%).
Next, we add spectrum correction, which results in an increase in the
amount of training data. As described before, device A data is used
to generate data from other devices, in which we get the same size
extra data with device A data. From the results in Table[3] we can ob-
serve that spectrum correction has a beneficial effect on overall clas-
sification results, but the accuracy on device A decreases. That out-
come is not unexpected since there is now much more training data
from other devices than from device A. New extra data is generated
by reverberation with DRC, which aims to simulate data from more
different devices. From the results we can see when extra data with
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Fig. 2. Nerual saliency analysis via CAM of an audio clip from a
metro station (metro_station_vienna_-87_2389_a.wav). The three
plots are: (a) spectrogram, (b) CAM of 3-class classifier, (c) CAM
of 10-class classifier. In this 10-second audio, brake and horn sound
starts from Os to around 8s and only reverberation remains after 5s.

reverberation and DRC is added in the training set, the overall ASC
accuracy is further boosted (72.8%), where most of the gain is im-
putable to an increse of the accuracy on the unseen test data. Finally,
we employ four more data augmentation approaches, including pitch
shift, speech change, random noise and mix audios. As shown in the
last row of Table[3] performance can be further boosted. Using all
strategies, a 74.6% accuracy on Resnet is attaine

3.4. Neural Saliency Analysis via Class Activation Mapping

Neural saliency methods [[18[34] aim to provide interpretable analy-
ses on the weight distribution over hidden neurons of a well-trained
artificial neural network model. Benchmark saliency methods, such
as class activation mapping (CAM) [18]}, have shown a correlation
between model performance and ability in spotting physical pattern
in DNN-based acoustic models [34].

In this work, we use CAM [18]] to gain a better understanding
about what sound patterns are found by our CNNs to accomplish the
ASC task. Indeed, CAM can highlight the class-specific discrimi-
native regions in the input feature map. In other words, CAM helps
generating a two-dimension activation map that can be used to bet-
ter interpret the prediction decision made by deep architectures. In
our case, where an audio clip is transformed into a time-frequency
representation, CAM reveals whether the ASC decision is triggered
by CNN’s attention posed on time and frequency regions of input
audio clip having a meaningful semantic content with respect to the
target acoustic scene. Examples of some analysis results obtained
with CAM are shown in Figures 2] and [3] where the spectrogram of
the input audio clip (top panel), and the CAM for the 3-class clas-
sifier (center panel), and the 10-class classifier (bottom panel) are
shown. Regions in CAM with deep red color imply that the CNN
pays more attention to them, and those regions have a higher class-
specific discriminative power. As the size of FCNN and fsFCNN’s
output feature map is too small to map back to the input, only Resnet
model is used for neural saliency analysis.

In Figure a 10-second audio clip referring to a metro station
scene is visualized; the audio clip contains brake and horn sounds
from Os to around 5s. After 5s, only reverberation remains in the
audio. The CAM result indeed reveals that the CNN pays more at-
tention to the segment between Os and 5s. Moreover, 3-class clas-
sifier and 10-class classifier have similar activation regions, and the

2We also increased amount of Resnet parameter, i.e, the channel number,
when all data-augmentation schemes are used.

Fig. 3. Nerual saliency analysis via CAM of an audio clip from a bus
(bus_prague-1102_42431_a.wav). The three plots are (a) spectro-
gram, (b) CAM of 3-class classifier, (c) CAM of 10-class classifier,
respectively. In this 10-second audio, brake sound starts from around
2s to around 5s, human talk starts from around 5s to 7s.

3-class classifier seems to give more weight to the information in that
region. Indeed, if we check the confidence in making the prediction,
i.e., scaled class posterior probability from the CNN, the proposed
two-stage fusion can increase it from 70.7% to 85.0%. The same
pattern can be observed in the results of Figure[3} in which it con-
tains a 10-second audio from a bus station. This audio has brake
sound between around 2s and 5s, and human speech starts around
Ss till 7s. From the CAM results, we can see that CNN pays more
attention to the segment from 2s to 5s, which contains a brake sound.
However, the CNN is not interested in the human speech although it
is clearly audible and related to the bus arriving announcement. This
result is indeed interesting: Human beings would use the bus-station
announcement to make ASC decision; however, the CNN cannot
perform speech recognition, so it may simply classify that region as
belonging to an ideal human speech class, which however appears in
many scenes and has therefore a low discriminative power.

We can thus argue that CNNs use acoustic events to classify the
input scene audios. Specifically, CNNs pay more attention to au-
dio segments containing acoustic events, such as birds sound from
park, or car horn sound from street traffic. It should be noted that
our conclusion with CAM is different from that in [I9], where the
authors claim that CNNs use background sound rather than acous-
tic events. By comparing the experimental setups, the main differ-
ence is that each audio clip is chunked into 10 1-second segments
in their setup; in contrast, we use the whole 10-second audio clip as
the input. Since acoustic events usually last for several seconds, it’s
difficult for CNNs to capture them when inputs are very short.

4. CONCLUSION

This work focuses on device robustness in acoustic scene classifica-
tion. We propose a novel two-stage ASC framework based on CNNs.
Three different fully CNN models and several novel data augmenta-
tion strategies are investigated to improve device robustness. A gen-
eral 3-class classifier and a specific 10-class classifier are combined
through score fusion. Experiments on the DCASE 2020 taskla de-
velopment set show the effectiveness of our solution. Specifically,
our best system, a two-stage fusion of a CNN-based ensemble, ob-
tains a state-of-the-art 81.9% average ASC accuracy. Moreover, our
CAM-based neural saliency analysis demonstrates that CNNs pay
particular attention to audio segments strictly related acoustic events
rather than simply fetching information from the background envi-
ronmental sound.
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