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ABSTRACT

Deep neural network based speaker recognition systems can easily

be deceived by an adversary using minuscule imperceptible pertur-

bations to the input speech samples. These adversarial attacks pose

serious security threats to the speaker recognition systems that use

speech biometric. To address this concern, in this work, we pro-

pose a new defense mechanism based on a hybrid adversarial train-

ing (HAT) setup. In contrast to existing works on countermeasures

against adversarial attacks in deep speaker recognition that only use

class-boundary information by supervised cross-entropy (CE) loss,

we propose to exploit additional information from supervised and

unsupervised cues to craft diverse and stronger perturbations for ad-

versarial training. Specifically, we employ multi-task objectives us-

ing CE, feature-scattering (FS), and margin losses to create adversar-

ial perturbations and include them for adversarial training to enhance

the robustness of the model. We conduct speaker recognition experi-

ments on the Librispeech dataset, and compare the performance with

state-of-the-art projected gradient descent (PGD)-based adversarial

training which employs only CE objective. The proposed HAT im-

proves adversarial accuracy by absolute 3.29% and 3.18% for PGD

and Carlini-Wagner (CW) attacks respectively, while retaining high

accuracy on benign examples.

Index Terms— Adversarial attack, Feature scattering, Hybrid

adversarial training, Multi-task objective, Speaker recognition

1. INTRODUCTION

Although deep learning approaches have revolutionized many ar-

eas of research, they remain vulnerable to adversarial attacks [1, 2].

These malicious attacks which contain perturbations imperceptible

to humans are intentionally crafted by an adversary to deceive a

trained deep neural network (DNN). Such adversarial examples that

are perceptually indistinguishable from the original examples pose

serious security threats to DNN-based speech biometric systems like

speaker recognition by drastically degrading its accuracy. Therefore,

to mitigate adversarial attacks, designing robust speaker recognition

systems with efficient defense mechanisms is an imminent need.

Initial works on adversarial examples to attack a deep learning

model have mainly focused on image classification [2,3]. Adversar-

ial attacks are ubiquitous beyond image classification, ranging from

automatic speech recognition (ASR) [4] to speaker recognition [5].

In [4], targeted audio adversarial examples on an end-to-end ASR

system were applied to achieve a 100% attack success rate. Attacks

based on psycho-acoustic hiding [6] and auditory masking [7] which

can produce human imperceptible audio were introduced to deep

ASR models with high success rate. On the other hand, the vul-

nerability of speaker verification (SV) systems to fast gradient sign

method (FGSM) attacks have been explored in literature on methods

based on end-to-end DNNs [8] and i-vectors [9]. In [7], the authors

have employed natural evolution strategy to craft adversarial sam-

ples to successfully attack GMM-UBM and i-vector based speaker

recognition systems. Recently, a generative network was proposed

in [10], which learns to yield universal adversarial perturbation to

attack SincNet-based speaker recognition system. However, most

of the aforementioned works have not used stronger available attack

algorithms.

There are very few defense methods that have been proposed

to mitigate adversarial attacks in speaker recognition systems. In

[11], adversarial regularization based on adversarial examples us-

ing FGSM and local distributional smoothness was proposed to en-

hance the robustness of the end-to-end SV system. A passive de-

fense using spatial smoothing, and a proactive defense using adver-

sarial training (AT) were introduced to handle adversarial attacks in

SV spoofing countermeasure system [12]. In our previous work, we

presented an expository study to show the effect of multiple state-of-

the-art adversarial attacks on a deep speaker recognition system [13].

Furthermore, multiple defense techniques resilient against adversar-

ial attacks were also introduced. Although these works demonstrate

initial efforts on adversarial defense in deep speaker recognition sys-

tems, their efficacy against large set of diverse adversarial attacks

have not been explored.

To address these issues, in this work, we first propose a new

defense approach through the lens of adversarial training using ad-

versarial perturbations generated by feature scattering (FS). The

feature scattering based adversarial training which is unsupervised

and avoids the label-leaking [14] issue of supervised schemes was

recently introduced in computer vision [15]. First, we adopt and

study the effectiveness of the FS-based defense method against ad-

versarial attacks in the speaker recognition context. Second, we

improve the adversarial training further by exploiting additional

information from the feature space to craft diverse and stronger

adversaries. We propose an attack using a hybrid setup based

on incorporating multi-task objectives: class-boundary information

(cross-entropy (CE) loss), feature matching distance between origi-

nal and perturbed samples (FS loss), and the difference between the

true class and the most-confusing class posteriors (margin loss) [16].

In this manner, the perturbation can find the blind-spots of the model

more effectively and in turn, that is used to learn a robust model

through adversarial training. The contributions of this work are

(a) a new hybrid adversarial training scheme based on multi-loss

objectives, (b) analysis and comparison of results against various

state-of-the-art white-box attacks [17] (Sec. 6.1), and (c) experi-

ments on transfer/black-box attacks [17].

http://arxiv.org/abs/2010.16038v1


2. ADVERSARIAL ATTACK AND TRAINING IN DEEP

SPEAKER RECOGNITION

Speaker recognition, the task of recognizing the speakers from their

spoken utterances, can be performed either for identification or ver-

ification [18, 19]. For closed-set speaker identification, based on

training utterances from a set of unique speakers, a DNN model is

trained using the classification loss such as cross-entropy (CE), and

during testing the input utterance is classified as belonging to one of

the speakers seen in training. The task of speaker verification (SV)

is to accept or reject an identity claim from a speech sample [20].

Although it is an open-set problem, many recent state-of-the-art SV

systems are formulated during model training with a classification

objective e.g., with a CE loss. Let x ∈ R
d denote an original input

speech sample with speaker label y, the standard speaker recognition

model θ is trained to minimize the CE loss as

argmin
θ

E(x,y)∼S L(x, y;θ) (1)

where L(·) is the cross-entropy loss, S represents the training set.

The adversarial perturbation ξ is added to x to generate adver-

sarial sample xadv = x+ξ such that ‖ξ‖p< ǫ, where ǫ is the allowed

perturbation budget. The perturbation ξ is optimized by maximizing

the loss function and this can be solved approximately either using

a one-step FGSM [21], or a multi-step projected gradient descent

(PGD) [22] approach. The general form of adversary generation can

be written as

x
t+1
adv = PSx

(

x
t
adv + α · sign

(

∇
x
t
adv
L
(

x
t
adv, y;θ

)

))

(2)

where PSx
is a projection operator as in a standard PGD optimiza-

tion algorithm, Sx is the set of allowed perturbations, i.e., l∞ or lp
ball around x, α is the step size for gradient descent update. For

FGSM attack, the total number of iterations is 1 and for PGD-T at-

tack it is T .

The basic idea of adversarial training is to inject adversarial sam-

ples continually generated from each minibatch and perform training

in an iterative online fashion using those samples. Adversarial train-

ing for defense improves the model robustness by solving a minimax

problem as

min
θ

[

max
xadv∈Sx

L (xadv, y;θ)

]

(3)

where adversarial attack is generated by inner maximization and ad-

versarial training is based on outer minimization of the loss induced

by the attack.

3. FEATURE SCATTERING ADVERSARIAL TRAINING

Supervised methods using cross-entropy loss for adversary genera-

tion move the data points towards the decision boundary and thus

disregard the original data manifold structure which might hinder

the classification performance. Moreover, supervised methods suf-

fer from label-leaking (adversarial perturbation is highly correlated

with the original speaker label and the classifier can directly infer

the speaker label from the perturbation without relying on the real

content of the data) issue [14]. To address these issues, the feature

scattering approach was introduced to generate adversarial samples

considering the inter-sample relationship [15]. This unsupervised

approach employs optimal transport (OT) [23] based feature match-

ing distance between two discrete distributions µ, ν as the loss func-

tion for perturbation generation. The two discrete distributions µ

and ν are: µ =
∑n

i=1 µiδxi
and ν =

∑n

i=1 νiδxadv,i
, where δx is

the Dirac function, and µ, ν are n-dimensional simplex, and n is the

minibatch size. The OT distance is the minimum cost of transporting

µ to ν and can be defined as

D(µ, ν) = min
T∈Π(µ,ν)

〈T,C〉 (4)

where 〈·, ·〉 stands for Frobenius dot product, T is the transport ma-

trix and C denotes cost matrix. The set Π(µ,ν) contains all possi-

ble joint probabilities with marginals µ(x), ν(xadv), and Π(µ,ν) =
{T ∈ Rn×n

+ |T1n = µ,T⊤
1n = ν} [15]. The cost matrix C is

computed based on cosine distance between original and perturbed

samples in the feature space, which is defined as

Cij = 1−
fθ(xi)

⊤fθ(xadv,j)

‖fθ(xi)‖2‖fθ(xadv,j)‖2
(5)

Feature matching distance, as defined in Eq. (4), is used in the inner

maximization loop in Eq. (3). The adversarial samples for training

are thus generated in an iterative fashion as in Eq. (2). The adver-

sarial training or the outer minimization procedure of Eq. (3) uses

cross-entropy loss to update the parameters of the model.

4. PROPOSED METHODOLOGY

4.1. Motivation

Optimizing inner maximum of Eq. (3) based on hand-crafted first-

order gradients often leads to local maxima that approximates the

optimal adversary. Success of the defense algorithms depends on

the quality of the local maximum. Stronger adversarial perturbation

may facilitate computing better local maximum [24]. Moreover, the

recognition system can be made more robust by training it with di-

verse adversarial attacks that can reveal the various blind spots or

vulnerabilities of the system. Therefore, in the pursuit of obtaining

strong and diverse adversaries, multi-task objective based on multi-

ple supervised/unsupervised cues could be useful, which might also

help in regularizing the network. Intuitively, the model can become

more robust if it is trained with diverse and stronger attacks [24].

4.2. Hybrid adversary generation

In this work, we propose to jointly utilize information from cross-

entropy (CE), feature scattering (FS) and margin losses to craft ad-

versarial perturbations. Specifically, we extract class boundary infor-

mation, inter-sample relationship by keeping the original data man-

ifold, and information to yield stronger adversaries by adding min-

imum perturbation. The loss function that is maximized in the pro-

posed hybrid adversarial training (HAT) setup is as follows:

Ladv = β · LCE(xadv, y) + γ · LFS(x,xadv) + ζ · LM (xadv, y) (6)

where β, γ, ζ are the tunable hyper-parameters. Here, all the three

losses are calculated from the model output or logit space. We de-

scribe the individual losses below.

4.2.1. Cross-entropy loss

The cross-entropy loss pushes the adversarial samples towards the

decision boundary [25]. The objective of the softmax cross-entropy

loss is to maximize the dot product between an input feature and its

true class representative and can be written as

LCE(xadv, y) = −
1

n

n
∑

i=1

1
⊤
y,i log[p(fθ(xadv,i))] (7)

where for (xadv, y) pair 1y is the one-hot encoding of y, the second

term is the log of predicted probability, and n is the minibatch size.

Maximizing this loss in multiple iterations like PGD-attack [22] can

yield diverse attacks.



Algorithm 1: Hybrid adversarial training (HAT)

Input: Classifier model θ, Dataset S, number of training

epochs Ne, learning rate η, attack iterations T ,

ǫ = 0.002, step size α = ǫ/5, w1, w2

Output: model θ

1 for k = 1 to Ne do

2 for random batch (xi, yi)
n
i=1 ∼ S do

3 Initialize µ =
∑n

i=1 µiδxi
, ν =

∑n

i=1 νiδxadv,i
,

‖xadv − x‖∞< ǫ
4 for t = 1 to T do

5 Forward pass x and compute Ladv // Eq.(6)

6 x
t+1
adv = PSx

(

x
t
adv + α · sign

(

∇
x
t
adv
Ladv

))

/* Backward pass and update the model

parameters to minimize the loss */

7 L(xadv, y;θ) = w1 · LCE(x, y) +w2 · LCE(xadv, y)

8 θ ←− θ − η · 1
n

∑n

i=1∇θL(xadv,i, yi;θ)

4.2.2. Feature-scattering loss

Since feature-scattering is performed on a batch of samples by lever-

aging the inter-sample structure, it induces a coupled regularization

useful for adversarial training. Nevertheless, it promotes data di-

versity without altering the data manifold structure much as com-

pared to supervised approach with label-leaking phenomenon. The

maximization of feature scattering loss for adversary generation is

LFS(x,xadv) = D(µ,ν) given in Eq. (4).

4.2.3. Margin loss

The margin loss based on Carlini-Wagner (CW) attack tries to find

the minimally-distorted perturbation [13, 16]. The objective of this

loss is to obtain stronger adversarial attack by minimizing the dif-

ference between the logits of the true class of the adversarial sample

and the most confusing class that is not the true class, with a margin

parameter that controls the confidence of the attack. The margin loss

that is maximized in our proposed defense is computed as

LM (xadv, y) =
n
∑

i=1

−

[

fθ(xadv,i)t −max
j 6=t

(fθ(xadv,i)j) +M

]

+

(8)

where t represents the output node corresponding to the true class y,

M is the confidence margin, and [·]+ represents max(·, 0) function.

4.3. Hybrid adversarial training (HAT)

The model training part (outer loop in Algorithm 1) of HAT employs

CE losses computed between clean samples and labels, and adver-

sarial samples (using proposed hybrid adversary) and labels. The

proposed training framework is listed in Algorithm 1.

5. EXPERIMENTAL SETUP

5.1. Dataset

We conduct all the speaker recognition experiments on Librispeech

[26] dataset. We employ the “train-clean-100” subset which con-

tains 100 hours of read English speech from 251 unique speakers.

For every speaker, we keep 90% of the utterances for training the

recognizer and use the remaining 10% for inference. This train-test

split is kept fixed for all the experiments in this paper.

5.2. Implementation details

The model we choose for our closed-set speaker classification task is

based on 1D CNN, which has 8 stacks of convolution layers [13]. We

apply ReLU non-linearity and batch-normalization after every conv

layer and max pooling after every alternate layer. The final layer is a

linear fully connected layer with 251 (# speakers) output nodes. It is

to be noted that our model also contains a non-trainable digital signal

processing front-end as a pre-processor, which is differentiable and

extracts log Mel-spectrogram from the raw speech signal. Therefore,

our adversarial attacks are applied directly in the time-domain.

We employ SGD with momentum optimizer [27] for training the

model with initial learning rate 0.1 until 60 epochs, then reduces it to

0.01 until 90 epochs, and further reduces it to 0.001 through the total

200 epochs. The perturbation budget ǫ = 0.002 is used in training and

testing similar to our previous work [13], and it produces adversarial

examples with signal-to-noise ratio (SNR)∼ 30dB. During training,

for FS loss computation we use Sinkhorn Algorithm [23] with reg-

ularization of 0.01 by following the original paper [15]. For margin

loss, the confidence margin is fixed at 50. Attack iteration T = 10
is applied for adversary generation in our HAT. In this work, we set

the value of β, γ, ζ, w1 and w2 as 1.

For testing, model robustness is evaluated by measuring the ac-

curacy under different adversarial attacks such as white-box FGSM

[21], PGD [22], CW [16] (within the same PGD framework), FS [15]

and also few variants of black-box attacks. The attack strength ǫ
here is also 0.002; however, we have shown performance with other

ǫ-values as well. We compare proposed HAT10 defense method

against other defenses such as FGSM-AT, PGD10-AT, FS10-AT 1.

6. RESULTS AND DISCUSSIONS

6.1. Performance under untargeted white-box attacks

6.1.1. Main results

We compare in Table 1 the performance of the defenseless model

(denoted as Standard), popular AT models, and our proposed HAT

model under the untargeted white-box attack scenario where the ad-

versary possesses complete knowledge of the model (e.g., architec-

ture and values of the parameters). For a fair comparison, we follow

the same threat model, i.e., l∞-attacks with ǫ = 0.002 for both train-

ing and testing. It is observed that although benign (clean) accuracy

of the standard model is very high (99.55%), it fails drastically under

all the white-box attacks. Comparing different defense methods we

observe that FGSM-AT is the weakest defense approach. We note

that PGD10-AT achieves consistently higher robustness against all

the attacks. On the other hand, although FS10-AT approach provides

high accuracy for clean, FGSM and FS attacks, its performance de-

grades under stronger PGD and CW attacks. This could be attributed

to the fact that FS based on OT distance increases the loss towards

some unknown class and there is no direct mechanism involved to

increase inter-class margin to induce stronger attacks. Finally, us-

ing our proposed HAT, we obtain significant performance boost over

FS method after incorporating multi-task objectives. Furthermore,

our defense attains 3.29% and 3.18% absolute improvement over

PGD10-AT under PGD40 and CW40 adversarial attacks. In addi-

tion, HAT yields superior performance over all the defense methods

under both seen (PGD10, CW10, FS10) and strong unseen (PGD40,

CW40, FS40) attacks.

6.1.2. Analysis

Fig. 1 shows the performance variation of different defense meth-

ods with respect to the change in perturbation (ǫ) strength. We vary

the epsilon value from 0.001 to 0.01 to simulate the PGD100 attack

while testing, however, all the trained models are based on same ǫ =

0.002. We observe that the trend of the curves are downward with an

increase in perturbation budget. Among the different defenses, we

1Code will be released with the paper.



Table 1: Accuracy comparison of the proposed defense with other baseline defenses under untargeted, white-box attacks with ǫ = 0.002

Defense Clean FGSM-attack
PGD-attack CW-attack FS-attack

10 20 40 10 20 40 10 20 40

Standard 99.55 6.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FGSM-AT 97.64 57.04 14.86 11.05 9.59 17.01 14.13 12.37 81.19 79.13 77.5

PGD10-AT 97.30 88.78 78.22 76.62 75.55 77.42 76.00 75.34 96.57 96.57 96.35

FS10-AT 96.12 82.85 60.69 55.28 53.19 38.45 35.68 32.54 96.81 96.51 96.47

HAT10 97.68 90.06 81.12 79.60 78.84 80.12 79.18 78.52 96.95 96.90 96.67
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Fig. 1: Performance of different defense methods under PGD100

attack with different attack budgets.
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Fig. 2: Performance of different defense methods under PGD attack

with different attack iterations at fix ǫ = 0.002.

see that the proposed HAT10 defense is slightly superior to PGD10-

AT and significantly better than other defense methods. Although

FS10-AT model is unable to beat PGD10-AT, it is significantly bet-

ter than the standard and FGSM-AT models.

We further evaluate the model robustness against PGD attacker

under different attack iterations with a fixed ǫ = 0.002, and the re-

sults are shown in Fig. 2. It is evident from the figure that both

PGD10-AT and HAT10 maintain a fairly stable performance across

the change in number of attack iterations from 10 to 100. We also ob-

serve that the proposed HAT10 consistently outperforms other base-

line defenses for all attack iterations.

6.1.3. Ablation study

We perform an ablation study to examine the contribution of each

loss function of our proposed defense technique. To do so, we em-

ploy each loss function individually and also their different possi-

ble combinations for adversary generation, and perform adversar-

ial training to finally measure the adversarial accuracy of all those

cases. Fig. 3 shows the difference in accuracy between our final pro-

posed loss combination (CE+FS+margin) and each losses for both

PGD10 and CW10 attacks. The effect of the losses on performance

in increasing order is FS, margin, CE, FS+margin, CE+margin and

Difference in adversarial accuracy (%)

PGD10

CW10

A
d

ve
rs

ar
ia

l a
tt

ac
k

20.43

41.67

3.53

3.5

2.9

2.7

2.6

0.5

1.7

3.1

0.9

0.6

FS margin CE FS+margin CE+margin FS+CE

Fig. 3: Difference in accuracy (%) between final proposed system

using HAT and system using different components of the proposed

loss combination for adversarial training.

Table 2: Adversarial accuracy under transfer/black-box attacks.

Source
PGD40-attack CW40-attack

PGD10-AT HAT10 PGD10-AT HAT10

Standard 97.30 97.58 97.32 97.54

FS10-AT 96.47 97.06 96.74 97.19

FS+CE for PGD10 attack, and FS, margin, CE+margin, CE, FS+CE

and FS+margin for CW10 attack, respectively.

6.2. Results on transfer/black-box attacks

We further evaluate the robustness of the HAT10 and PGD10-AT

models under black-box setting, where the adversary has complete

knowledge about the source model, but no or very limited knowledge

about the target model (such as model architecture). The PGD40

and CW40 attacks are generated from the Standard and FS10-AT

models and transferred to the PGD10-AT and HAT10 models. The

corresponding results are summarized in Table 2. We observe that

for black-box attacks accuracy of our defense remains higher than

PGD10-AT defense.

6.3. Sanity checks for gradient masking

To further verify if gradient masking (phenomenon where adversar-

ially trained models provide false sense of robustness by learning

to generate less useful gradients to adversarial attacks [28]) is oc-

curring, we do sanity checks devised in [28]. We can say that our

defense does not rely on gradient masking based on the following

observations (a) The adversarial accuracy under black-box attacks

(reported in Table 2) remains higher than white-box attacks (reported

in Table 1) (b) In all our evaluations (Table 1, Fig. 1, Fig. 2), our pro-

posed defense yields lower adversarial accuracy for iterative PGD

attacks as compared to one-step FGSM attack (c) Our defense accu-

racy approaches to zero (Fig. 1) if we increase the attack budget to a

large value.
7. CONCLUSIONS

In this work, we proposed a hybrid adversarial training algorithm

that provides diverse and stronger adversarial perturbations (by

jointly utilizing multiple losses) for adversarial training to improve

the robustness of deep speaker recognition system against various

types of attacks. We demonstrate the effectiveness of the proposed

defense method through experiments on various white-box and

black-box attacks with different perturbation budgets. In the future,

we will extend this work for an end-to-end SV setting, and will

evaluate under l1, l2 norm based attacks and also auditory masking

based human imperceptible attacks.
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