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ABSTRACT

Human subjective evaluation is the “gold standard” to evalu-
ate speech quality optimized for human perception. Percep-
tual objective metrics serve as a proxy for subjective scores.
The conventional and widely used metrics require a reference
clean speech signal, which is unavailable in real recordings.
Previous no-reference approaches correlate poorly with hu-
man ratings and are not widely adopted in the research com-
munity. One of the biggest use cases of these perceptual ob-
jective metrics is to evaluate noise suppression algorithms.
This paper introduces a multi-stage self-teaching based per-
ceptual objective metric that is designed to evaluate noise sup-
pressors. The proposed method generalizes well in challeng-
ing test conditions with a high correlation to human ratings.

Index Terms— Speech, Perceptual Speech Quality, Ob-
jective Metric, Deep Noise Suppressor, Metric.

1. INTRODUCTION

Subjective evaluation of speech quality is the most reliable
way to evaluate Speech Enhancement (SE) methods [1].
However, subjective tests are not scalable as they require
a considerable number of listeners, the process is labori-
ous, time-consuming, and expensive. Conventional objec-
tive speech quality metrics such as Perceptual Evaluation of
Speech Quality (PESQ) [2], Perceptual Objective Listening
Quality Analysis (POLQA) [3] and Signal to Distortion Ra-
tio (SDR) are widely used to evaluate Speech Enhancement
(SE) algorithms optimized for human perception. Some of
these metrics are designed to predict the subjective Mean
Opinion Score (MOS) obtained using the Telecommunication
Standardization Sector of the International Telecommunica-
tion Union (ITU-T) Recommendation P.800 [4]. There are
also the intrusive metrics requiring a reference clean speech
to compute the quality score. However, they are shown to
correlate poorly with human rating when used for SE tasks
that involve perceptually invariant transformations [1]. Also,
intrusive metrics cannot be used to evaluate real recordings
when clean reference is unavailable in realistic scenarios.

ITU-T Recommendation P.563 is a non-intrusive tech-
nique and can directly operate on the degraded signal [5].

However, it was developed for narrow-band applications and
works well on limited impairment types. Recently, Deep
Neural Networks (DNN) based approaches have been pro-
posed to estimate the speech quality scores [6, 7, 8]. Some of
these learning-based approaches use other objective metrics
as the ground truth to train their speech quality predictor. A
handful of published methods use MOS obtained using P.800
as the ground truth to train their models. In [9], the authors
trained the model to identify the Just Noticeable Difference
(JND). MOS predictors trained on actual human ratings are
more reliable than the ones trained to predict other objective
metrics like PESQ or POLQA. The accuracy and robustness
of the learned models depend on the quality of the human
labels and also the quantity and diversity of the audio clips.
There is no large scale human-labeled data set publicly avail-
able to train a model that can robustly generalize to a variety
of audio impairments, especially for SE task. Though the
learning-based approaches have a higher correlation to hu-
man ratings when tested on a limited and small test set, none
of these speech quality metrics are as widely used as some
of the intrusive objective metrics. Most of the publications
in the area of noise suppression and SE test their methods on
synthetic noisy speech test sets using intrusive speech quality
metrics such as PESQ, POLQA and SDR.

In this paper, we have developed a robust objective per-
ceptual speech quality metric called DNSMOS. It can be used
to stack rank different Deep Noise Suppression (DNS) meth-
ods based on MOS estimates with great accuracy and hence
the name DNSMOS. A simple Convolutional Neural Network
(CNN) based model is trained using the ground truth human
ratings obtained using ITU-T P.808 [10, 11]. P.808 is an on-
line subjective testing framework that is highly reproducible
and shown to stack rank noise suppression models with high
accuracy when each model is tested as an average over a sta-
tistically significant number of clips. However, P.808 rat-
ings per clip can be noisy due to various factors. The ab-
solute MOS per clip might vary for the same clip in different
P.808 runs due to the inherent noise in human rating [12].
The number of ratings per clip varies due to spam removal.
Also, all the spammers might not be filtered due to the lim-
itations of spam filtering logic in P.808 implementation. We
train a multi-stage self-teaching model inspired by continual
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life long learning [13] to learn in the presence of noisy labels.
We show that the multi-stage training significantly improves
the correlation and generalizes remarkably well to other im-
pairment types that are very different from what was used
in the training set. We found the DNSMOS very useful in
our audio/speech research as it generalizes well to a variety
of speech impairments. Hence, we are providing the DNS-
MOS as an Azure service for other researchers to use. The
details of the API are at www.microsoft.com/en-us/
research/dns-challenge/dnsmos.

2. DATA AND SUBJECTIVE RATINGS

We used 600 noisy speech test clips comprised of a combina-
tion of synthetic and real recordings. The synthetic test set is
a combination of both non-reverberant and reverberant clips.
The real recordings were captured in a variety of noise types
and Signal to Noise Ratio (SNR) and target levels. The test
set is comprised of over 100 noise types and speakers. More
details about the creation of these test sets can be found in
[11]. These 600 clips were processed by over 200 different
noise suppression methods. Some of these methods improved
the overall speech quality, but they also introduced a variety
of artifacts as a consequence of over or under suppression of
noise, resulting in speech and noise distortions. The speech
quality ratings of the processed clips varied from very poor
(MOS=1) to excellent (MOS=5). The distribution of the MOS
scores in the training data is shown in Figure 1a. The scores
are highly skewed with most ratings populated in the range
3<MOS<4 and fewer ratings in both the tails. The distribu-
tions in Figure 1a also shows that the current state of the art
noise suppression techniques are not good enough to shift the
overall distribution above MOS of 4. Figure 1b shows the dis-
tribution of the number of ratings per clip in the training set.
The skewness in the distribution is due to the fact that some
of the ratings were removed in the process of removing spam
ratings. Also, we used 10 ratings per clip in some of the ex-
periments and 5 ratings per clip in others. Figure 1c shows
the distribution of standard deviation per clip. There are a
significant number of clips with a standard deviation of over
1 MOS, which shows that the audio clips are highly subjec-
tive in nature. Increasing the number of ratings per clip will
reduce the standard deviation, but also increases the cost.

The subjective human ratings are obtained in several P.808
runs conducted over several months. Multiple noise suppres-
sion methods are compared in each P.808 run. Each P.808 run
included the best performing noise suppressor, original noisy
speech, and a couple of methods with intermediate percep-
tual quality from previous runs as anchors. Hence, some of
the clips were rated multiple times. In total, we have about
120,000 audio clips with associated MOS scores as ground
truth. The average length of each audio clip was about 9 sec-
onds. In [10], we show that P.808 is highly reproducible with
high SRCC between runs when we average the ratings across

(a) Distribution of MOS ratings (b) Distribution of number of votes

(c) Distribution of standard deviation
per clip

Fig. 1: Statistics of the training set

clips processed by a given model. However, the absolute val-
ues of the scores vary between P.808 runs as the raters differ
and humans tend to be inconsistent in perceptual tasks due to
various biases.

3. DNSMOS

3.1. Learning in the presence of label biases

The variation in the absolute values between P.808 runs might
pose a challenge in training models that learn to predict MOS
scores when the training data includes the same audio clip
with different ratings. We know from the literature that DNN
models can generalize well in spite of the noise for classifica-
tion tasks [14, 15]. The variation in the absolute scores from
different runs can be treated as noise in the labels. Also, the
clips with fewer ratings can be treated as noise due to higher
standard deviation. There are other unknown human biases
that play a role in the variation of ratings. We initially took a
direct approach where we trained a deep model by including
all the available data without any modification. The model
tends to learn the weighted average of the ratings across runs
and also tries to average out other biases. This plain approach
gave a good correlation with human ratings when tested on
the data that was very similar to the training set. However,
the correlation dropped when tested on a more challenging
test set that was very different from the training data.

We improved the generalization and accuracy of the pre-
dictor by training a few stages of self-teaching models. In
[16], a sequence of self-teachers were used to improve the
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generalizability of a classification task with binary cross-
entropy loss in noisy and weakly labeled conditions. We
use a similar approach for the regression problem at hand
with Mean Squared Error (MSE) as the loss function. Unlike
knowledge distillation where a larger teacher model is used
to produce soft labels to train a smaller student model, we use
the same model architecture for both teacher and the student,
and hence the name self-teacher. The student model uses
the weighted average of the predictions from one or multiple
teacher models and the original human MOS ratings. The
primary teacher model M0 is trained until the loss saturates
using the original ground truth human MOS ratings r. The
student model Ms at stage s, is trained using the new target
given by,

r̂s = α0r +
s−1∑
i=0

αi+1r̂i (1)

where r̂i is the prediction of model Mi and
∑s

i=0 αi = 1. In
this work, we restrict s to 2. With some assumptions to the
noise distribution, it can be theoretically proven that the Ms

is better than M0 for s > 0. Since the distribution of noise in
our case is complex, we show through empirical experiments
that the predicted MOS of Mi is of higher accuracy than M0

for appropriately chosen values of α.

3.2. Features

Recently, researchers have seen success in learning features
within the model for tasks such as SE [17], speech, and music
synthesis [18] and to learn acoustic models [19]. They show
that using the time-domain waveform requires a larger model
trained on a larger and diverse data set to ensure generaliza-
tion. The ground truth MOS scores are obtained for audio
clips with an average length of 9 secs sampled at 16 kHz. This
leads to a very large input dimension if we are treating it as
a vector and the model requires many layers to compress and
extract input features. We used Log power Mel spectrogram
as input feature as it correlates well with human perception
and is proven to work very well for analyzing speech quality
[7]. For spectral features, we used a frame size of 20 ms with
a hop length of 10 ms and 120 Mel frequency bands. The
input features are then converted to dB scale.

3.3. Prediction model

For predicting the MOS scores, we explored different con-
figurations of CNN based models. The architecture for the
best performing model is shown in Table 1, which is the ar-
chitecture for all M. The input to the model is log power
Mel Spectrogram with 120 Mel bands computed over a clip
of length 9 secs sampled at 16 kHz with a frame size of 20 ms
and hop length of 10 ms. This results in an input dimension of
900 x 120. The model was trained with a batch size of 32 us-
ing the Adam optimizer and MSE loss function until the loss
saturated. We experimented by adding batch normalization

Table 1: DNSMOS Prediction Model

Layer Output dimension
Input 900 x 120 x 1
Conv: 32, (3 x 3), ‘ReLU’ 900 x 120 x 32
MaxPool: (2 x 2), Dropout(0.3) 450 x 60 x 32
Conv: 32, (3 x 3), ‘ReLU’ 450 x 60 x 32
MaxPool: (2 x 2), Dropout(0.3) 225 x 30 x 32
Conv: 32, (3 x 3), ‘ReLU’ 225 x 30 x 32
MaxPool: (2 x 2), Dropout(0.3) 112 x 15 x 32
Conv: 64, (3 x 3), ‘ReLU’ 112 x 15 x 64
GlobalMaxPool 1 x 64
Dense: 64, ‘ReLU’ 1 x 64
Dense: 64, ‘ReLU’ 1 x 64
Dense: 1 1 x 1

layers after every Conv layer in Table 1. However, adding
batch normalization reduces the prediction accuracy of low
volume clips. Humans tend to give lower ratings to the clips
with low amplitudes. We want the model to capture the varia-
tions in the target levels of the data. Hence, we avoid any kind
of feature normalization. We also explored different network
architectures including CNN followed by LSTM. The model
in Table 1 generalized the best and was of least complexity.

4. EXPERIMENTAL RESULTS

4.1. Evaluation metric

Pearson Correlation Coefficient (PCC) or MSE between the
predictions of the developed objective metric and the ground
truth human ratings is commonly used to measure the accu-
racy of the model [7, 8]. From the earlier discussion, we know
that P.808 correlation is highly repeatable between runs when
averaged across a set of clips per condition, which can be
formed by grouping clips enhanced by a particular SE model
or based on other criteria like SNR or reverb RT60 times. The
PCC computed on the average of ratings per group across dif-
ferent runs is >0.9. We also found that PCC computed on the
same clips but from two different P.808 runs is only about 0.5
due to the high rating noise per clip.

Hence, for stack ranking different noise suppressors we
evaluate by computing the average of ratings across the entire
test set for each model. Therefore, we compute SRCC and

Table 2: Correlation of DNSMOS with other widely used
objective metrics

PESQ SDR POLQA DNSMOS (M0)
PCC 0.78 0.23 0.79 0.93

SRCC 0.82 0.25 0.84 0.94



(a) MOS vs PESQ (b) MOS vs SDR

(c) MOS vs POLQA (d) MOS vs DNSMOS

Fig. 2: Scatter plots of different objective metrics vs MOS

Fig. 3: SRCC between MOS and M1 for different α0 values

PCC between averaged human ratings and averaged DNS-
MOS per model. SRCC gives us the stack ranking accuracy
of various SE models.

4.2. Results

4.2.1. DNSMOS vs other objective speech quality metrics

Table 2 shows the PCC and SRCC between human ratings
and widely used PESQ, POLQA, SDR and DNSMOS (M0)
computed on the Interspeech DNS challenge blind test re-
sults [11]. The results show that SDR correlates poorly with
MOS. PESQ and POLQA reasonable PCC and SRCC. But the
primary DNSMOS model (M0) correlates significantly bet-
ter than other objective metrics and is highly reliable in stack
ranking the SE models. The scatter plots in Figure. 2 shows
that DNSMOS aligns with MOS better than SDR, PESQ, and
POLQA. Both PESQ and POLQA have a cluster on the left
top of the graph indicating that they tend to penalize certain
artifacts more than we humans do.

Table 3: Per category SRCC between (M0) and MOS on DNS
Challenge 2 results

Mi(α0,α1,α2) English Non-English Tonal Emotional Singing Overall
M0(1 ,- ,-) 0.78 0.67 0.51 0.69 0.36 0.65

M1(0.8, 0.2, -) 0.81 0.86 0.81 0.58 0.61 0.90
M1(0.6, 0.4, -) 0.90 0.85 0.82 0.72 0.58 0.88
M1(0.4, 0.6, -) 0.93 0.92 0.87 0.67 0.57 0.88
M1(0.2, 0.8, -) 0.90 0.85 0.82 0.72 0.58 0.88
M2(-, 0.5, 0.5) 0.90 0.86 0.81 0.75 0.54 0.90

M2(0.6, 0.2, 0.2) 0.91 0.85 0.82 0.78 0.72 0.89
M2(0.8, 0.1, 0.1) 0.88 0.85 0.82 0.68 0.69 0.88

4.2.2. Generalizability of DNSMOS

We initially analyzed the effect of α0 on M1 to understand
the weightage given to the teacher model M0 vs human rat-
ings. Figure. 3 shows the SRCC between MOS and M1 for
different values of α0 computed on one of the P.808 runs with
12 closely stack ranked models. We see in Figure. 3 that the
SRCC is higher for α0 = 0.8.

The noisy and the processed clips comprised of a similar
distribution as that of the training set. In order to test the
generalization capability of training multiple stages of self-
teaching models, we evaluated on the ICASSP 2021 DNS
Challenge 2 final submissions [20], which comprised of the
blind test set processed by 18 different noise suppressors.
The blind set included emotional speech, singing, utterances
in English and non-English languages including a few tonal
languages. The DNSMOS models were trained on the data
which was predominantly in English with very little or no
emotional content such as laughter, crying, yelling, anger,
etc. The training set did not include singing and other non-
English languages as well. Table 3 shows the SRCC between
the DNSMOS models at various stages and P.808 MOS for
each category in the blind set. The SRCC of the primary
model M0 is quite low as it does not generalize well for cat-
egories other than English. M1 significantly improved SRCC
from 0.65 to 0.9 for α0 = 0.8. The optimal values of α0 were
different for each category in table 3. We also experimented
with M2 for a couple of settings of (α0,α1,α2). For M2(-,
0.5, 0.5) with M1(0.2, 0.8, -) for stage 2 gave the best results.
The other settings did not show much improvement over M1.

5. CONCLUSION AND FUTURE WORK

DNSMOS is a robust speech quality metric designed to stack
rank noise suppressors with great accuracy. The multi-stage
self-teaching approach significantly improved accuracy. In
the future, we would like to deepen our theoretical under-
standing of how the choice of αi influences the accuracy of
Mi for different datasets. This will help in training DNSMOS
on other impairment types such as network distortions, codec
artifacts, and reverberation without the need for large scale
data with human labels.
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