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ABSTRACT

In this work, we propose a hierarchical subspace model for acous-

tic unit discovery. In this approach, we frame the task as one of

learning embeddings on a low-dimensional phonetic subspace, and

simultaneously specify the subspace itself as an embedding on a hy-

per-subspace. We train the hyper-subspace on a set of transcribed

languages and transfer it to the target language. In the target lan-

guage, we infer both the language and unit embeddings in an unsu-

pervised manner, and in so doing, we simultaneously learn a sub-

space of units specific to that language and the units that dwell on

it. We conduct our experiments on TIMIT and two low-resource

languages: Mboshi and Yoruba. Results show that our model out-

performs major acoustic unit discovery techniques, both in terms of

clustering quality and segmentation accuracy.

Index Terms— acoustic unit discovery, hierarchical subspace

model, unsupervised learning

1. INTRODUCTION

Current machine learning approaches for speech processing rely on

large collections of annotated audio recordings. In contrast, infants

learn to speak long before they are able to read and write. Aug-

menting machines with similar capability would have a great impact.

First, it would drastically reduce the cost of data annotation, there-

fore allowing speech technologies to be extended to low-resource

languages. Second, by the proposed “reverse-engineering” approach

to cognitive science [1], it would pave the way to a better understand-

ing of human learning.

In this paper, we focus on the task of Acoustic Unit Discov-

ery (AUD). This task consists of discovering an inventory of phone-

like units—denoted “acoustic units”—from a set of untranscribed

recordings. This is a simplified model of a language acquisition

where we consider learning phonetics rather than the complete struc-

ture of speech (phones, syllables, words, ...).

The AUD task has been the subject of numerous publications [2,

3, 4]. Nowadays, two major approaches are widely used: (i) neural-

network-based models which typically use auto-encoder structure

with a discretization layer [5, 6, 7] (ii) non-parametric Bayesian

generative-based models which can be seen as infinite mixtures time

series models [8, 9, 10], or hybrids of both as in [11].

This work follows the Bayesian paradigm and is a direct exten-

sion of [12], where the target language’s acoustic units parameters
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are forced to lie on a language-independent phonetic subspace that

is estimated from several transcribed languages.

We propose a subspace that is adapted to the target-language in

an unsupervised fashion. We achieve this by learning a language-

independent hyper-subspace from transcribed data in other lan-

guages, and a low-dimensional embedding vector for the target

(low-resource) language. The hyper-subspace is a set of matrices

which can be thought of as subspace “templates” and the embed-

ding determines how these templates are combined for the target

language. Thus we have hierarchical structure in which the lower

level constrains units and the higher level constrains subspaces.

2. PROBLEM DEFINITION

The problem of acoustic unit discovery can be formulated as

that of learning a set of U discrete units with parameters H =
{η1, . . . ,ηU} from a sequence of untranscribed acoustic features

X = (x1, . . . ,xN ), as well as the assignment of frame to unit

z = (z1, . . . , zN ). Formally, we seek to maximize:

p(z,H|X) ∝ p(X|z,H)p(z,H). (1)

As in [8, 9], p(X|zn,H) is given by an HMM with parameters

ηzn , and we further factorize the prior:

p(z,H) = p(z|H)
U
∏

u=1

p(ηu). (2)

Note that the number of units U is unknown and also needs to be

learned for an unknown language. Prior work [9] addresses this

issue by constructing p(z|H) with a sample from a Dirichlet pro-

cess [13] with base measure p(η). This leads to an infinite “phone-

loop” model where each acoustic unit component is a 3-state left-

to-right HMM. The exact relation between the Dirichlet Process and

the phone-loop structure of the model is discussed at length in [14].

In this work we focus on the construction of the base measure and

we leave the rest of the model unaltered.

The base measure p(η) defines a prior probability that a sound—

represented by an HMM with parameters η—is an acoustic unit.

Earlier works on Bayesian AUD [8, 9, 15, 16] use exponential family

distributions as the base measure. These distributions, while math-

ematically convenient since they form conjugate priors, do not in-

corporate any knowledge about phones. For instance, the models

a priori may consider the sound of a car engine to be as likely an

acoustic unit as the “ah” sound. Perhaps more detrimentally, the

models are also likely to model other sources of variability such as

speaker, emotional state, channel etc.

Therefore, we utilize the generalized subspace model (GSM) [12]

which provides a solution to the problem of specifying an educated
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Fig. 1. Illustration of a hierarchical subspace model. For each lan-

guage λ, acoustic unit embeddings (encoding the parameters of a

probabilistic model) are assumed to live in a language-specific sub-

space W
λ of the total parameter space. This subspace is given

by a weighted sum of matrix bases M1,M2, . . . (shared across

languages) and language-specific weights αλ: W
λ = αλ

1M1 +
αλ
2M2 + . . . .

base measure by defining the parameters of each unit u as:

η
u = f(W · eu + b), (3)

where e
u is a low-dimensional unit embedding, W and b are the

subspace parameters and f(·) is a deterministic and differentiable

function that ensures that the resulting vector ηu dwells in the HMM

parameter space. W, eu, and b are assumed to have Gaussian distri-

butions with diagonal covariance matrices. The posteriors of W and

b are estimated from other, transcribed, languages and fixed for the

target language while the posteriors of eu are learned in the target

language. Thus, the parameters H = {η1, . . . ,ηU} are constrained

to a low-dimensional manifold of the parameter space.

3. HIERARCHICAL SUBSPACE HMM

The GSM of [12] enforces an educated prior by transferring the sub-

space parameters (W,b) to a target language. This makes the im-

plicit assumption that the subspace is universal i.e. that the units of

all languages lie on the same manifold. We hypothesize that this is

too strong an assumption, and that having a language-dependent sub-

space allows us to better model the units of a specific target language.

However, naively training, or even fine-tuning, the subspace on the

target language counters its purpose by removing the constraint on

the space of units, thereby losing transferred phonetic information.

To deal with the dilemma, we propose a hierarchical sub-

space model (HSM). The crux of this model is to allow language-

dependent subspaces, but only as long as they lie on a manifold of

the hyper-space of subspaces, as depicted Fig. 1. Formally:

W
λ = M0 +

K
∑

k=1

α
λ
kMk (4)

b
λ = m0 +

K
∑

k=1

α
λ
kmk (5)

η
λ,u = f(Wλ · eλ,u + b

λ), (6)

where W
λ and b

λ define the subspace for language λ and ηλ,u is

the vector of parameters for unit u of language λ. The unit parame-

ters, ηλ,u are constructed from a linear combination of the columns

of Wλ weighted by unit-specific embedding vectors eλ,u and a bias

vector b
λ. Similarly, Wλ is defined by a linear combination of

basis matrices [M1, . . . ,MK ] weighted by language-specific em-

bedding vectors αλ = [αλ
1 , α

λ
2 , . . . , α

λ
K ]⊤ plus bias matrix M0.

The bias vector bλ is similarly obtained by a linear combination of

[m1, . . . ,mK ] and αλ plus bias term m0.

We assume Gaussian priors for the random variables:

α
λ
k ∼ N (0, σα) (7)

Mk,ij ∼ N (0, σM ) (8)

mk,i ∼ N (0, σm) (9)

e
λ,u
i ∼ N (0, σe), (10)

with variances set to 1. Note that the posterior distribution that we

seek is modified from (1) to:

p(z,Eλ
,α

λ
,M|Xλ) ∝ p(Xλ|z,Eλ

,α
λ
,M)p(z|Eλ

,α
λ
,M)

· p(Eλ)p(αλ)p(M) (11)

M = (M0, . . . ,MK ,m0, . . . ,mK), Eλ = {eλ,1, . . . , eλ,Uλ

}
and X

λ is language-specific data. To complete the definition of our

generative process, we model the likelihood of a speech segment Xλ
s

given an acoustic unit p(Xλ
s |zs = u,H) as a 3-state left-to-right

HMM with parameter vector:

η
λ,u =

[

η
λ,u⊤
1 ,η

λ,u⊤
2 ,η

λ,u⊤
3

]⊤

, (12)

and each state has emission probabilities modeled as a GMM with

K = 4 Gaussian components:

η
λ,u
i =

[

µ
λ,u⊤
i,1 , . . . ,µ

λ,u⊤
i,K , vec(Σλ,u

i,1 )⊤, . . . , vec(Σλ,u
i,K)⊤,

π
λ,u
i,1 . . . π

λ,u
i,K

]⊤
, (13)

where [·]⊤ is the transpose operator, vec is the vectorize operator,

π
λ,u
i,j , µ

λ,u
i,j and Σ

λ,u
i,j are the weight, mean and covariance matrix of

the ith HMM state and the jth Gaussian component of the acoustic

unit u in language λ. The function f(·) in (6) is defined as:

π
λ,u
i,j =

exp{Wλ,i
π · eλ,u + b

λ,i
π }j

1 +
∑K−1

k=1 exp{Wλ,i
π · eλ,u + b

λ,i
π }k

(14)

Σ
λ,u
i,j = diag(exp{Wλ,i,j

Σ · eλ,u + b
λ,i
Σ }) (15)

µ
λ,u
i,j = Σ

λ,u
i,j ·

(

W
λ,i,j
µ · eλ,u + b

λ,i
µ

)

, (16)

where exp is the element-wise exponential function and exp{...}j
is the jth element of the resulting vector. W

λ,i
π is the subset of

rows of matrix W
λ assigned to the mixing weights π

λ,·
i of the ith

HMM state. Matrices W
λ,i,j
µ and W

λ,i,j
Σ are similarly defined for

the mean and covariance matrix of the jth Gaussian component of

ith HMM state.

Thus we have a Hierachical Subspace Hidden Markov Model

(H-SHMM). Note that the choice of HMM as the likelihood model

follows previous work [8, 9, 12] and is not integral to the proposed

hierarchical subspace model.

3.1. Inference in the Hierarchical Subspace HMM

The H-SHMM training procedure follows the SHMM training [12]

modified to accommodate the alterations made to the model. Given a

set of L languages, our goal is to compute the parameters’ posterior:

p({zλ}, {Eλ}, {αλ},M|{Xλ}), λ ∈ {1, . . . , L}, (17)

where z
λ,Eλ,αλ and X

λ are language-specific variables. For con-

ciseness, we define θλ = ({αλ}, {Eλ}). Since (17) is intractable,



we seek an approximate posterior q by maximizing the variational

lower-bound L[q] subject to the following mean-field factorization:

q({zλ}, {θλ},M) =
[

L
∏

λ=1

q(zλ)q(θλ)
]

q(M)

= q({zλ})q({θλ})q(M). (18)

In addition, we impose the following parametric form on q({θλ})
and q(M):

q({θλ})q(M) = N
(

ω,diag(exp{ψ})
)

. (19)

With the factorization in (18), the variational lower-bound becomes:

L[q] =
L
∑

λ=1

[

〈

ln p(Xλ|zλ,θλ
,M)

〉

q
−DKL

(

q(zλ)||p(zλ)
)

−DKL

(

q(θλ)||p(θλ)
)

]

−DKL

(

q(M)||p(M)
)

. (20)

We optimize (20) through an expectation-maximization procedure

where we iteratively re-estimate each of the variational posteriors

q({zλ}) and q({θλ})q(M) given the current estimate of the other.

In the expectation step, we compute q({zλ}) which maxi-

mizes (20) using a modified forward-backward algorithm. Instead

of the log-likelihood, we use the expectation of the log-likelihood

with respect to the posterior of the the HMM parameters. More

details on this can be found in [14].

In the maximization step, we compute q({θλ})q(M) which

maximizes (20) . Since this has no closed-form solution, we instead

optimize an empirical approximation of (20):

L(ω,ψ) =
1

S

S
∑

s=1

{ L
∑

λ=1

[

〈

ln p(Xλ|zλ,θλ
s ,Ms)

〉

q(zλ)

−DKL

(

q(θλs )||p(θ
λ
s )
)

]

−DKL (q(Ms)||p(Ms))

}

,

(21)

({θλs },Ms) = ω + exp{
ψ

2
} ⊙ ǫs, ǫs ∼ N (0, I), (22)

where ⊙ is the element-wise multiplication operation. Equa-

tions 21 - 22 are a special case of the so-called re-parameterization

trick [17]. We use stochastic gradient ascent to maximize (21) with

respect to ω and ψ.

The first term in (21) is a sum over terms computed separately

for each Gaussian component c = (λ, u, i, j)—jth Gaussian com-

ponent of the ith state of unit u in language λ:

〈

ln p(Xλ|θλ
s , z

λ
, c)

〉

q(zλ)
=
Nc

2

(

2πc
s + ln |Λc

s| − µ
c⊤
s Λ

c
sµ

c
s

)

+ φ⊤

c Λ
c
sµ

c
s −

tr{ΦcΛ
c
s}

2
+ const .

(23)

For each component, the mean µc
s, precision matrix Λ

c
s = (Σc

s)
−1

and mixing weight πc
s are obtained from a sample (Ms,θ

λ
s ) us-

ing equations 14-16. γnc are the Gaussian responsibilities for each

time frame n computed in the expectation step, Nc =
∑

n
γnc, φc

=
∑

n
γncxn and Φc =

∑

n
γncxnx

⊤

n are the zeroth, first and sec-

ond order sufficient statistics respectively for Gaussian component

c. Note that (23) is a differentiable function of ω and ψ.

Overall, the training of our AUD system comprises two stages.

First, we infer a set of variational posteriors q0({z
λ}), q0({θ

λ})
and q0(M) on transcribed source languages where λ ∈ {1, . . . , L}.

At this stage, the phone-loop of the AUD model is replaced with a

forced alignment graph. Then, on the target language t, we infer new

variational posteriors q1(z
t), q1(θ

t) using q0(M) to compute the

expectation and maximization steps. Note that q0(M) is not updated

during this stage, but transferred as is from the source languages.

Finally, the output of our AUD system is obtained from a mod-

ified Viterbi algorithm [14] which uses the expectation of the log-

likelihoods with respect to q1(θ
t)q0(M) instead of point estimates.

4. RELATED WORK

Our proposed model builds heavily on the generalized subspace

model of [12]. Our novelty is that we introduce a hyper-subspace

to allow unsupervised adaptation of the subspace itself. In partic-

ular, if the language embedding α is set to 0, then the H-SHMM

becomes identical to the SHMM. Another related model is the Sub-

space Gaussian Mixture Model (SGMM) used for ASR acoustic

modeling [18]. While the SGMM incorporates a subspace of means

of individual Gaussian components and mixture weights, following

the SHMM, our subspace models entire 3-state HMMs including

covariance matrices. Moreover, where the SGMM uses maximum

likelihood training, we use a variational Bayes framework to infer

the posterior distributions of the parameters.

5. EXPERIMENTS

5.1. Data and features

We test the performance of our models on the following languages:

1. Mboshi [19]: 4.4 hours with 5130 utterances by 3 speakers.

2. Yoruba [20]: 4 hours with 3583 utterances by 36 speakers.

3. English: from TIMIT [21] excluding the sa utterances. 3.6

hours with 4288 utterances by 536 speakers.

Note that we train and test on the entirety of each corpus since we are

doing unsupervised learning. We include English in order to have a

control language to facilitate comparison with other baselines.

We use seven transcribed languages for training the hyper-

subspace: German, Spanish, French and Polish from Global-

phone [22]; and Amharic [23], Swahili [24] and Wolof [25] from

the ALFFA project [26]. For each of these, we use only a subset of

1500 utterances which corresponds to 3-5 hours per language.

5.2. Metrics

We evaluate the performance of our models with two metrics for

phone segmentation and phone clustering. For segmentation, we re-

port the F-score on phone boundary detection with a tolerance of

±20 milliseconds. For clustering, we report the normalized mutual

information (NMI) which is computed from a frame-level confusion

matrix of discovered units (U ) and actual phones (P ) as:

NMI(P,U) = 200×
I(P ;U)

H(P ) +H(U)
%, (24)

where H(·) is the Shannon entropy and I(P ;U) is the (un-

normalized) mutual information. An NMI of 0 means that the

the discovered acoustic units are completely unrelated to the actual

phones, while an NMI of 100 means that the units have a one-to-one

correspondence with the actual phones. Note that the H(U) term in

the denominator rewards more compact representations.



5.3. Experiment setup

Although the Dirichlet process prior allows us to model an arbitrary

number of units, in practice, we set the truncation parameter [27] to

100, and we find that number of discovered units tends to be fewer.

We set the dimension of the H-SHMM unit embeddings |eλ,u| =
100. We set the dimension of the language embeddings |αλ| =
6. We use 5 samples for the re-parametrization trick and train with

Adam optimizer [28] with a learning rate of 5× 10−3.

We report results on five baselines: HMM [9], SHMM [12],

VQ-VAE [7], VQ-wav2vec [6] and ResDAVEnet [29]. We use 13-

dimensional MFCC features along with their first and second deriva-

tives as features for the H-SHMM, HMM, SHMM and VQ-VAE.

The HMM [9] and SHMM [12] are the most comparable models

to the H-SHMM. We set the truncation parameter to 100 for both.

Furthermore, we train the SHMM subspace with the same source

languages that we use to train the H-SHMM hyper-subspace and we

set the subpace dimension to 100.

We also impemented VQ-VAE [7] baselines as they have been

shown to learn good discrete representations of speech [5]. The

most critical choices we made were: (i) having a big encoder (5

BLSTM layers) but weak decoder (feed-forward with one hidden

layer) as stronger decoders resulted in better reconstruction error but

worse latent representations, (ii) low-dimensional latent space (16-

d) to discard irrelevant information, (iii) relatively few units (50 cen-

troids) and down-sampled encoder (by factor of 2) to prevent over-

segmentation, and (iv) concatenating a learned speaker-embedding

(32-d) to the decoder input to help the encoder focus more on pho-

netic information. We tune these parameters to maximize the NMI

and F-score on English and kept them for the other two languages.

We report results for two other neural discrete representation

learning models: VQ-wav2vec [6] and ResDAVEnet-VQ [29]. Note

that we cannot replicate these models on our low-resource languages

as the former is trained with 960 hours of Librispeech [30] data while

the latter requires paired captioned images for training [31]. There-

fore, in both cases, we use the authors’ own code and pre-trained

models to extract discrete representations for the TIMIT utterances

and report those results. We tested the various pre-trained models

available for each system and report only the best performing ones.

For VQ-wav2vec, we report results for the Gumbel softmax vari-

ant since it gave higher NMI and F-score than the K-means variant.

For ResDAVEnet-VQ, we report results on the “{3} → {2, 3}”

model (ResDAVEnet-VQ-I) with units extracted from layer-2 and

the “{2} → {2, 3}” model (ResDAVEnet-VQ-II) with units ex-

tracted from layer-3 as we found they had the highest NMI and F-

score respectively of the available pre-trained models.

Our H-SHMM, HMM and SHMM code are publicly available 1.

Our implementation of the VQ-VAE is also public 2.

5.4. Experiment results

We train each system with 5 random initializations and report the

means and standard deviations of the results in Table 1. The SHMM

and H-SHMM subspace and hyper-subspace respectively are trained

once, and only the AUD is repeated 5 times. Since we use pre-trained

VQ-wav2vec and ResDAVEnet-VQ models, we only run them once

per language. From the results, we take the SHMM as our main base-

line since it outperforms the other baselines on all metrics. More-

over, it provides the best direct comparison as it is the most struc-

turally similar baseline to our proposed model.

1https://github.com/beer-asr/beer/tree/master/recipes/hshmm
2https://github.com/BUTSpeechFIT/vq-aud

Table 1. Acoustic unit discovery results.

Corpus System NMI F-score

English ResDAVEnet-VQ-I 35.93 54.19

ResDAVEnet-VQ-II 34.39 64.36

VQ-wav2vec 35.20 26.84

VQ-VAE 32.03 ± 0.30 59.05 ± 0.34

HMM 35.91 ± 0.27 63.86 ± 0.95

SHMM 39.17 ± 0.16 74.65 ± 0.60

SHMM+finetune 37.83 ± 0.25 72.20 ± 0.65

SHMM+300d 39.62 ± 0.20 73.62 ± 0.84

H-SHMM (ours) 40.04 ± 0.51 76.60 ± 0.54

Mboshi VQ-VAE 31.27 ± 0.26 39.19 ± 0.71

HMM 35.85 ± 0.62 47.92 ± 1.56

SHMM 38.38 ± 0.97 59.50 ± 0.78

SHMM+finetune 36.09 ± 0.49 53.06 ± 1.06

SHMM+300d 37.51 ± 0.45 53.71 ± 1.41

H-SHMM (ours) 41.07 ± 1.09 59.15 ± 1.51

Yoruba VQ-VAE 29.90 ± 0.40 37.52 ± 0.79

HMM 36.38 ± 0.22 54.47 ± 0.64

SHMM 38.99 ± 0.08 64.46 ± 0.51

SHMM+finetune 36.97 ± 0.38 58.59 ± 0.34

SHMM+300d 39.08 ± 0.13 61.09 ± 1.01

H-SHMM (ours) 40.06 ± 0.11 66.95 ± 0.36

We achieve significant NMI improvements over the SHMM with

the H-SHMM. We also get similar F-score improvements in English

and Yoruba, but get a slightly worse average F-score on Mboshi.

The novelty of the H-SHMM is that we introduce a way of adapt-

ing the subspace to the target language. We tested whether sim-

ply fine-tuning the SHMM subspace parameters on the target lan-

guage would achieve the same results. The result of fine-tuning

(SHMM+finetune) is not just worse than H-SHMM, it is in fact

worse than SHMM. This is intuitive because fine-tuning the sub-

space parameters relaxes the constraint on the HMM parameters.

Another difference is that the H-SHMM has more transferred

parameters than the SHMM. Therefore, we experimented with in-

creasing the number of transferred SHMM parameters by changing

the subspace dimension to 300 (SHMM+300d). The results show no

significant benefit over the SHMM with dimension 100.

To visualize the learned language embeddings, we train an H-

SHMM with |αλ| = 2. For this experiment, we split each corpus

into four subsets, so that the model a priori treats each subset as

a different language. After inference, we find that αλ of different

subsets of the same language converge with small within-language

variance for source languages and higher variance for target lan-

guages, so the model is able to cluster subsets that come from the

same language without being told. The images can be found at

https://www.fit.vutbr.cz/~iyusuf/hshmm.html.

6. CONCLUSION

In this paper, we have proposed a hierarchical subspace model for

unsupervised phonetic discovery in which a phonetic subspace con-

strains the parameters and ensures that the learned parameters define

a plausible phone. Similarly, a hyper-subspace constrains the pa-

rameters of the subspace itself. We have shown that the proposed

model outperforms the non-hierarchical baseline as well as other

neural network-based AUD models.

Going forward, we hope to explore better generative models than

the HMM, as well as different subspace hierarchies, such as having

different subspaces for various phone classes or speaker subspaces.
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[16] Lucas Ondel, Lukaš Burget, Jan Černockỳ, and Santosh Kesir-

aju, “Bayesian phonotactic language model for acoustic unit

discovery,” in 2017 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp.

5750–5754.

[17] Diederik P Kingma and Max Welling, “Auto-encoding Varia-

tional Bayes,” in ICLR, 2014.

[18] Daniel Povey et al., “The subspace gaussian mixture model—a

structured model for speech recognition,” Computer Speech &

Language, vol. 25, no. 2, pp. 404 – 439, 2011, Language and

speech issues in the engineering of companionable dialogue

systems.

[19] Pierre Godard et al., “A very low resource language speech cor-

pus for computational language documentation experiments,”

arXiv preprint arXiv:1710.03501, 2017.
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Rivera, and Kó. lá Túbò. sún, “Developing an Open-Source Cor-

pus of Yoruba Speech,” in Interspeech, Shanghai, China, 2020.

[21] J Garofolo, L Lamel, W Fisher, J Fiscus, D Pallet, and

N Dahlgren, “The DARPA TIMIT acoustic-phonetic con-

tinuous speech corpus CDROM. NTIS order number PB91-

505065,” 1990.

[22] Tanja Schultz, Ngoc Thang Vu, and Tim Schlippe, “Global-

phone: A multilingual text & speech database in 20 languages,”

in 2013 IEEE International Conference on Acoustics, Speech

and Signal Processing. IEEE, 2013, pp. 8126–8130.

[23] Solomon Teferra Abate, Wolfgang Menzel, and Bairu Tafila,

“An Amharic Speech Corpus for Large Vocabulary Continuous

Speech Recognition,” in INTERSPEECH-2005, 2005.

[24] Hadrien Gelas, Laurent Besacier, and Francois Pellegrino,

“Developments of Swahili resources for an automatic speech

recognition system,” in SLTU - Workshop on Spoken Lan-

guage Technologies for Under-Resourced Languages, Cape-

Town, Afrique Du Sud, 2012.

[25] Elodie Gauthier, Laurent Besacier, Sylvie Voisin, Michael

Melese, and Uriel Pascal Elingui, “Collecting Resources in

Sub-Saharan African Languages for Automatic Speech Recog-

nition: a Case Study of Wolof,” LREC, 2016.

[26] Laurent Besacier et al., “Speech technologies for african lan-

guages: Example of a multilingual calculator for education,”

in Interspeech, 2015.

[27] David M Blei, Michael I Jordan, et al., “Variational inference

for Dirichlet process mixtures,” Bayesian analysis, vol. 1, no.

1, pp. 121–143, 2006.

[28] Diederik P Kingma and Jimmy Ba, “Adam: A method for

stochastic optimization,” arXiv preprint arXiv:1412.6980,

2014.

[29] David Harwath, Wei-Ning Hsu, and James Glass, “Learn-

ing Hierarchical Discrete Linguistic Units from Visually-

Grounded Speech,” in International Conference on Learning

Representations, 2020.

[30] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev

Khudanpur, “Librispeech: an ASR corpus based on public

domain audio books,” in 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2015, pp. 5206–5210.

[31] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-

ralba, and Aude Oliva, “Learning deep features for scene

recognition using places database,” in Advances in neural in-

formation processing systems, 2014, pp. 487–495.


	1  Introduction
	2  Problem definition
	3  Hierarchical Subspace HMM
	3.1  Inference in the Hierarchical Subspace HMM

	4  Related work
	5  Experiments
	5.1  Data and features
	5.2  Metrics
	5.3  Experiment setup
	5.4  Experiment results

	6  Conclusion
	7  References

