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ABSTRACT

Estimating the directions of arrival (DOAs) of multiple
sources from a single snapshot obtained by a coherent an-
tenna array is a well-known problem, which can be addressed
by sparse signal reconstruction methods, where the DOAs are
estimated from the peaks of the recovered high-dimensional
signal. In this paper, we consider a more challenging DOA
estimation task where the array is composed of non-coherent
sub-arrays (i.e., sub-arrays that observe different unknown
phase shifts due to using low-cost unsynchronized local os-
cillators). We formulate this problem as the reconstruction of
a joint sparse and low-rank matrix and solve its convex relax-
ation. While the DOAs can be estimated from the solution of
the convex problem, we further show how an improvement is
obtained if instead one estimates from this solution the phase
shifts, creates “phase-corrected” observations and applies an-
other final (plain, coherent) sparsity-based DOA estimation.
Numerical experiments show that the proposed approach out-
performs strategies that are based on non-coherent processing
of the sub-arrays as well as other sparsity-based methods.

Index Terms— Direction of arrival, array processing,
sparse and low-rank signal, multiple sources, single snapshot.

1. INTRODUCTION

Estimating the directions of arrival (DOAs) of radio fre-
quency sources using an array of antenna elements is an
important problem that attracts much interest in different dis-
ciplines, such as signal processing and communications []1].
In many practical applications, e.g. when the sources and/or
receivers are moving, it is required to estimate the DOAs
from a single realization (snapshot) of the measurements.
Several existing strategies can handle the single snapshot sce-
nario. While the classical methods are based on minimization
(often greedy) of the negative log-likelihood function [2-4]]
and more recent methods are based on training deep neural
networks [5]], another popular approach is based on formu-
lating the problem as a sparse signal reconstruction task, and
estimating the DOAs from the peaks of the magnitude of the
recovered high-dimensional signal [68].

When the antenna elements are coherent the DOA esti-
mation performance improves with the increase of the array
aperture [9}|10]. However, maintaining the coherence of all
the elements of a large array is very demanding, especially
at high carrier frequency, as it requires expensive hardware
and a complicated calibration process that is prone to errors.
Therefore, a possible alternative, with lower hardware com-
plexity and cost, is to split a large array into several smaller
sub-arrays, such that the coherence of the elements is kept
only within each sub-array, while the large aperture of the en-
tire array is exploited using signal processing techniques [[11]].

Most of the methods that can be applied to estimate
the DOAs for non-coherent sub-arrays are either based on
non-coherent processing of the sub-arrays (handling the sub-
arrays as if they observe different signals) [12H14], or require
a large number of snapshots with the same phase offsets
between the sub-arrays (note, though, that unsynchronized
local oscillators lead to different phase offsets in each snap-
shot) [[I5H19]]. Therefore, to advance the performance of
DOA estimation from a single snapshot of non-coherent
sub-arrays, the work in [11]] has proposed an approximate
maximum likelihood approach. However, this approach as-
sumes that the number of sources is known. Moreover, it is
based on non-convex optimization with respect to an opti-
mization variable whose dimension is the number of sources.
Therefore, it requires a multidimensional search, or, when
solved using iterative schemes, it depends on the quality of
the initialization.

In this paper, we propose a novel method to estimate the
DOAs from a single snapshot of non-coherent sub-arrays.
It is based on convex optimization, and thus does not rely
on good initializations and can easily handle scenarios with
a large (possibly unknown) number of sources. Borrowing
ideas from sparsity-based DOA estimation for coherent ar-
rays [[7] and from low-rank-based blind deconvolution [20],
we formulate the problem as the reconstruction of a joint
sparse and low-rank matrix and solve its convex relaxation.
Then, the DOAs can be estimated from the solution of the

ICoherent elements are elements that are connected to the same local os-
cillator. Therefore, ignoring the noise, the phase differences between their
observations are only due to the difference in the propagation delays between
the location of the sources and the location of the elements.



convex problem. Yet, we show how an improvement is ob-
tained if instead of estimating the DOAs, this solution is
used to estimate the sub-arrays’ phase shifts, create a “phase-
corrected” observation vector and use it to estimate the DOAs
via another final (plain, coherent) sparsity-based DOA es-
timation. Numerical experiments show that the proposed
approach outperforms other spectrum-based strategies, such
as a variant of MUSIC [21]] and a sparsity-based method that
adapts self-calibration algorithms [22,23]] to the considered
problem.

2. PROBLEM FORMULATION

Consider (@ far-field sources, located at unknown angles 6 £
[01,...,00]" and transmitting unknown narrowband signals
that impinge on an M -element receiving array. Let the array
be composed of L sub-arrays, where the /th sub-array consists

L
of My elements (Y M, = M). We assume that each sub-
=1
array is coherent, while different sub-arrays are non-coherent,

i.e. there is an unknown phase shift between sub-arrays. Fur-
thermore, we assume that only a single snapshot is available.

The waveform observed by each of the L sub-arrays can
be formulated as

xp=e 1% A)(0)5+ny, (=1,...,L, (1)

where ¢, is the unknown phase in the /th sub-array, A,(0) £
[as(01), . ..,a0(0g)] € CMex@ s the (th sub-array manifold,
where each column a,(0) is the ¢th sub-array response to a
signal which arrives at angle §. The vector § € C?*! rep-
resents the unknown signals, and ny, € CMex1 represents
white, zero-mean, circular complex Gaussian noise. To sim-
plify the formulation, we assume that the noise variance o2 is
known, and equal at all receivers (the extension to non equal
variances is straightforward). Regarding the steering vector
ay(#), assuming that the axis origin (i.e. the reference point)
is defined in the middle of the entire array, and that the source
angle is measured with respect to the boresight, then

[@0(0))i = go,i(0)ed S (resindtuescost) (g

where ) is the signal wavelength, (z,,,y. ;) denotes the an-
tenna location, and g, ; denotes the antenna element pattern,
which is assumed to be known. For example, for linear ar-
rays of omnidirectional sensors we have that g, ;(#) = 1 and
Yei = 0.

To conclude this section, the problem at hand is to es-
timate the DOAs 6 from the sub-arrays’ observations {x;}
given in (I}, where {¢,} and § are nuisance parameters.

3. THE PROPOSED METHOD

We propose to look at the problem from the sparse signal
reconstruction perspective [7]. Namely, we define a DOA

grid of length Ny > @ (containing different hypotheses of
a scalar DOA) and for each sub-array create the measurement

matrix Ay, = [a,(01),...,a,(0y,)] € CM*Ne, The obser-
vation model in (T)) can now be reformulated as
:ICg:OtzAgS—F’ng, {=1,... L, 3)

where oy £ e79¢ (the superscript * denotes the complex con-
jugate), and s € CNe*1 obeys ||s|o = Q, where || - ||o is the
£y pseudo-norm that counts the number of non-zero entries of
the vector. Note that the complicated non-linear model in (TJ
is replaced with the model in (3 that is bilinear with respect
to the unknown parameters & = [ay,...,ar]? and s. This
suggests that, similarly to the “lifting” strategy used in [20]
for the blind deconvolution problem (which is also bilinear),
we can express (3) as a linear model with respect to a rank-1
matrix Z £ saff € CNo*L Indeed,

mg:AgZ[l,a%»ng, {=1,...,L, @

where Z[:, ¢] denotes the /th column of Z. Note that Z is not
only rank-1, but also “row-sparse”, i.e., only Q of its rows are
non-zero. Note also that, in practice, the number of sources,
@, may not be known in advance. Therefore, a natural non-
convex optimization problem that arises from (@) is

min || 2] + - rank(2)

L
st Y @ — AZ[: |5 < CMo?, (5)

=1
where 1 and C' are positive parameters, || - ||2 stands for the
Euclidean norm, and || - ||o,2 is a pseudo-norm that counts

the number of non-zero rows of the matrix (or equivalently,
counts the number of rows whose Euclidean norm is non-
zero). Note that we currently ignore the fact that {a,} have
unit magnitude. Yet, this information will be used later on.
Hypothetically, given a solution to (3)), one can extract
from it an estimator of the signal s, and estimate the DOAs
as the angles associated with indices of the peaks of the
magnitude of the latter estimator. However, (E]) is a non-
convex problem (due to its objective) that is not tractable to
solve. Therefore, to obtain a convex problem that can be
efficiently solved we perform convex relaxation on (3. Fol-
lowing the common practice [24,25], we replace rank(Z)
with the nuclear norm | Z||. that sums the singular val-
ues of the matrix, and replace fy-type pseudo-norms with
their ¢;-norm counterparts, i.e., we replace || Z|o2 with

A Ng
12= ),

n=1

1Z]

L

>~ |Z[n, ]|?. Therefore, we get the follow-
(=1
ing convex optimization problem

min [ Z][1,2 + ul| Z]«

L
st Y |lwe — AZ[L 0)||; < CMo?. (6)
(=1



This convex program can be directly solved by the CVX Mat-
lab package [26]] (that applies the SDPT3 solver [27]). Since
typically L (the number of sub-arrays) is small, this proce-
dure has tractable runtime (it took only a few seconds in our
experiments with Intel-i7 laptop).

Let us denote by chx the solution to (6). Although the
nuclear norm promotes low-rankness, it does not strictly im-
pose rank-1. To strictly impose it, we apply the singular
value decomposition (SVD) on chx- Namely, we decom-
pose Zewe = UAVH where U € CNoxNo and V' € CLxL
are unitary matrices and A is a rectangular diagonal matrix.
Now, the rank-1 approximation of oy i given by Z =
AL YU, 1V, 1H, where 8 = A[1, 11U, 1] and & =
V[:, 1] can be used as proxies to s and o

We turn to develop rwo DOA estimation strategies. The
first strategy, which has already been mentioned above, is to
estimate the DOAs as the peaks of the magnitude of the Ny x 1
vector §. Yet, recall that until now we ignored the fact that
the “true” {ay} have unit magnitude (since ay = e/%¢). To
exploit this information, we propose another DOA estimation
strategy (which improves the results in our experiments).

First, we estimate (only) the phase shifts {¢;} from Z by

bp = Za[) = 2VI[e,1], €=1,...,L, (7

where Zx stands for the phase of the complex number zx.
Looking back on the model in (I, we use the estimated phase
shifts to obtain the “phase-corrected” observations of the en-
tire array, denoted by Z, that can be (approximately) modeled
as

e.jd;lwl
2| . | ~A@0)E+7, ®)

8>

ej(z)LwL

~ ~ ~ T
where A(8) 2 [A{(@)...A{(e) € CMXQ and 71 €

CM is a noise vector, whose statistics are not expected to dra-
matically change (compared to {n,}) due to the phase shifts.
As a minor remark, note that only the differences between the
phase shifts estimates {ésg} matter, as the mean of the esti-
mated phases can be absorbed into the unknown vector s.

At this point, any DOA estimation method for coherent
array that can handle the single snapshot case can be applied
on the “phase-corrected” i, modeled in . We choose to
use the popular sparsity-based technique from [7]. Using the
same notations of s and A, that are used in (E]) we reformu-

late (B) as
T~ As+m, 9)

T .
where A £ [AT ... AT]" € CM*MNo and estimate s as the
minimizer of the following convex program

min s,
S

st. ||z — As|; < cMo?, (10)

where C' is a positive parameter and || - ||; is the ¢;-norm.
Again, this problem can be solved fastly using CVX [26]], and
we denote by Sy this solution. Finally, as done in [7]], we
estimate the DOAs as the peaks of the magnitude of the Ng x 1
vector Scyx-

4. NUMERICAL RESULTS

We perform computer simulations to evaluate the perfor-
mance of the two proposed DOA estimation methods. The
strategy where we estimate the DOAs from Z will be re-
ferred to as Proposedl. The strategy where we estimate the
phase shifts from Z and then apply (quasi-)coherent sparsity-
based method will be referred to as Proposed2. In all the
experiments we use the parameters ¢ = 1 and C' = 2 in (6).

We compare our strategies with two reference methods.
The first reference method is a sparsity-based approach that
adapts the self-calibration algorithms [22}23]] to the consid-
ered non-coherent problem. Specifically, this technique ob-
tains a matrix Z € CNo*L using a convex program that is
similar to (6) except that its objective includes only || Z||; 2
(i.e., ¢ = 0 and C' = 2). Then, following [23] (that has
presented better results than [22]), the rank-1 approximation
of Z is obtained using SVD. The DOAs are estimated as the
peaks of the magnitude of the Ny x 1 most dominant left sin-
gular vector of Z. This method will be referred to as Spar-
sityOnly. Observe that the difference between our Proposed]
and SparsityOnly is the fact that we include the nuclear norm
in the convex optimization.

The second reference method is based on MUSIC [21]].
It treats the realizations of the L sub-arrays as L snapshots
of a single sub-array. We use this method, which will be re-
ferred to as MUSIC, with spatial smoothing [28]] and forward-
backward smoothing [29] (within each sub-array) that empir-
ically improved its performance. Applying this non-coherent
MUSIC is possible since in our experiments the sub-arrays
are uniform linear arrays (ULAs) with similar sensor config-
uration. Note that all the examined methods are based on es-
timating the DOAs as the peaks of Ny x 1 “spectrums”, and
that only MUSIC requires the number of sources, (), for gen-
erating its spectrum.

We consider a ULA of M = 24 elements, with half wave-
length spacing, partitioned into L = 4 sub-arrays of size
M, = 6. We start with = 2 sources located at angles
{0°,15°} (the boresight angle of the entire array is 0°) that
transmit complex Gaussian signals with equal power. The un-
known phase of each sub-array is selected at random from a
uniform distribution over [0, 27]. To obtain statistical results,
we perform Ney, = 250 Monte Carlo experiments at each
SNR between 0 dB to 30 dB. In each experiment we draw the
Gaussian noise {n,}, the signal §, and the unknown phases
{¢¢}. For each method, the performance is measured by the
root mean square error (RMSE) of the () highest peaks.

The RMSE results are presented in Fig.[I] It can be seen
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Fig. 1: RMSE vs. SNR for sources at 0° and 15°, using 4
uniform linear sub-arrays, each of 6 elements.
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Fig. 2: RMSE vs. SNR for sources at —15°, 0°, 15° and 30°,
using 4 uniform linear sub-arrays, each of 6 elements.

that Proposed1, which promotes low-rankness within the con-
vex optimization, it better than SparsityOnly. The best ac-
curacy is observed for our Proposed2. The better perfor-
mance of Proposed2 over Proposedl (especially at high SNR)
demonstrates the advantage of using the solution of the joint
sparse and low-rank optimization problem for estimating the
phase shifts rather than the DOAs.

Spectrum-based methods are especially preferable over
maximum likelihood techniques when the number of sources
is large. Thus, we turn to examine a scenario with = 4
sources, located at angles {—15°,0°,15°,30°}. The rest of
the configuration remains as before. The RMSE results are
presented in Fig. 2] and the estimators’ spectrums for one re-
alization at SNR of 20 dB are displayed in Fig.[3] Compar-
ing the spectrums of Proposedl and SparsityOnly in Fig. 3]
we see that the nuclear norm that is used in Proposedl re-
duces the sparsity but significantly improves the accuracy of
the DOAs estimates (i.e., the location of the peaks). We fur-
ther see from Fig. [3|that MUSIC’s peaks are quite accurate for
this realization, though, one source is almost not identified.
Such detection failures explain the bad results of MUSIC at
low to medium SNR in Fig. [2| Clearly, the best accuracy is
observed for our Proposed?.

Note that in Fig. |2| the advantage of the two proposed
methods over the reference methods is larger than in Fig.
This can be explained by the property that having more
sources improves the phase offsets estimation (see the anal-
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Fig. 3: The spectrums of the different methods for sources at
—15°,0°, 15° and 30°, using 4 ULAs, each of 6 elements, for
one realization at SNR of 20 dB. From left to right and top to
bottom: SparsityOnly, MUSIC, Proposedl, and Proposed?2.

ysis in [[I1]]). Specifically, this property directly explains
the improved results compared to MUSIC (which is a non-
coherent processing method). As for the improved advantage
over SparsityOnly, note that the phase shifts estimation re-
lates to the nuclear norm term in (6). While this term is used
for both Proposedl and Proposed2, it is eliminated (1 = 0)
for SparsityOnly.

5. CONCLUSIONS

We addressed the problem of estimating the DOAs of multiple
sources from a single snapshot of non-coherent sub-arrays.
We formulated this problem as the reconstruction of a joint
sparse and low-rank matrix and solved its convex relaxation.
Unlike methods that are based on maximum likelihood [[11]],
our approach can easily handle scenarios with a large (and
possibly unknown) number of sources. We showed two ways
to estimate the DOAs. The first strategy, estimates the DOAs
directly from the solution of the convex problem and outper-
forms an existing sparsity-based method that does not pro-
mote low-rankness within the optimization. The second strat-
egy, which has shown even improved results, uses the solution
of the convex problem for estimating the phase shifts rather
than the DOAs. The estimated phase shifts are then used
to “correct” the observations, which allows DOA estimation
with plain methods of coherent arrays. We note that there is
work that questions the benefit of combining nuclear and ¢;
norms for exact reconstruction of an entire high-dimensional
matrix [30]. However, our paper shows that when the goal is
to estimate from the observations only a rather small set of
fundamental parameters (e.g., DOAs and phase shifts) then
this combination of norms can be beneficial.
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