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ABSTRACT

A number of recent advances in neural audio synthesis rely on up-

sampling layers, which can introduce undesired artifacts. In com-

puter vision, upsampling artifacts have been studied and are known

as checkerboard artifacts (due to their characteristic visual pattern).

However, their effect has been overlooked so far in audio processing.

Here, we address this gap by studying this problem from the audio

signal processing perspective. We first show that the main sources

of upsampling artifacts are: (i) the tonal and filtering artifacts in-

troduced by problematic upsampling operators, and (ii) the spectral

replicas that emerge while upsampling. We then compare different

upsampling layers, showing that nearest neighbor upsamplers can be

an alternative to the problematic (but state-of-the-art) transposed and

subpixel convolutions which are prone to introduce tonal artifacts.

Index Terms — upsampling, neural networks, synthesis, audio.

1. INTRODUCTION

Feed-forward neural audio synthesizers [1–4] were recently pro-

posed as an alternative to Wavenet [5], which is computationally

demanding and slow due to its dense and auto-regressive nature [6].

Among the different feed-forward architectures proposed for neural

audio synthesis [6–8], generative adversarial networks (GANs) [1,

4, 9] and autoencoders [2, 3, 10] heavily rely on upsampling lay-

ers. GANs allow for efficient feed-forward generation, by upsam-

pling low-dimentional vectors to waveforms. Autoencoders also

allow for feed-forward generation, and their bottleneck layers are

downsampled—requiring less computational and memory footprint

around the bottleneck. While GANs and autoencoders allow for fast

feed-forward architectures, the upsampling layers that are typically

embedded in these models can introduce upsampling artifacts [1, 2].

Three main types of upsampling layers exist: transposed con-

volutions [1, 3, 9], interpolation upsamplers [2, 11], and subpixel

convolutions [10, 12, 13]. These can introduce upsampling artifacts,

as shown in Fig. 1—where we plot a spectrogram of their output

after random initialization, to stress that upsampling artifacts are

already present before training. We experiment with state-of-the-art

neural synthesizers based on transposed convolutions (MelGAN

and Demucs autoencoder) or on alternative upsampling layers (in-

terpolation and subpixel convolutions). MelGAN uses transposed

convolutions for upsampling [4]. We implement it as Kumar et

al. [4]: with 4 transposed convolution layers of length=16,16,4,4

and stride=8,8,2,2 respectively. Demucs is an autoencoder employ-

ing transposed convolutions. We implement it as Défossez et al. [3]:

with 6 transposed convolution layers of length=8 and stride=4.

Transposed convolutions in MelGAN and Demucs introduce what

we call “tonal artifacts” after initialization (Fig. 1: a, b, and Sec. 2).

Next, we modify Demucs’ upsampling layers to rely on nearest

neigbor interpolation [14] or subpixel convolution [12] upsam-

plers. Interpolation upsamplers can introduce what we describe

as “filtering artifacts” (Fig. 1: c, and Sec. 3), while subpixel con-

volution can also introduce the above mentioned “tonal artifacts”

(Fig. 1: d, and Sec. 4). In sections 2, 3 and 4, we describe the origin

of these upsampling artifacts. In section 5, we note that spectral

replicas can introduce additional artifacts. Finally, in section 6, we

discuss the effect that training can have on such artifacts. A notebook

version of the paper, with code to experiment with the figures below,

is at: github@dolbylaboratories/neural-upsampling-artifacts-audio .
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(a) MelGAN [4]

0 1 2 3 4 5 6
time (seconds)

0

10000

20000

fr
eq

ue
nc

y 
(H

z)

-150dB

-100dB

-50dB

+0dB

(b) Demucs [3]: original

0 1 2 3 4 5 6
time (seconds)

0

10000

20000

fr
eq

ue
nc

y 
(H

z)

-150dB

-100dB

-50dB

+0dB

(c) Demucs: nearest neighbor
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(d) Demucs: subpixel CNN

Fig. 1. Upsampling artifacts after initialization: tonal artifacts

(horizontal lines: a,b,d) and filtering artifacts (horizontal valley: c).

Input: white noise. MelGAN operates at 22kHz, Demucs at 44kHz.

2. TRANSPOSED CONVOLUTIONS

Transposed CNNs are widely used for audio synthesis [1, 3, 9] and

can introduce tonal artifacts due to [15]: (i) their weights’ initializa-

tion, (ii) overlap issues, and (iii) the loss function. Issues (i) and (ii)

are related to the model’s initialization and construction, respectively,

while issue (iii) depends on how learning is defined. In this article,

we use the terms length and stride for referring to the transposed con-

volution filter length and stride, respectively. Three situations arise:

– No overlap: length=stride. No overlap artifacts are introduced,

but the weight initialization issue can introduce tonal artifacts.

– Partial overlap: length is not a multiple of stride. Overlap and

weight initialization issues can introduce tonal and boundary artifacts.

– Full overlap: length is a multiple of stride. Overlap artifacts can

be introduced (as boundary artifacts at the borders) and the weight

initialization issue introduces tonal artifacts after initialization.

Issue (i): Weight Initialization — It is caused by the transposed

convolution weights that repeat across time, generating a periodic

pattern (tonal artifacts) after random initialization. To understand

this issue, we leave the overlap and loss function issues aside and

consider an example of a randomly initialized transposed convolu-

tion with no overlap (length=stride=3, see Fig. 2). Given that the

filter Wd is shared across time, the resulting feature map includes a

periodicity related to the temporal structure of the (randomly initial-

ized) weights. Fig. 2 (bottom) exemplifies this behavior by feeding

ones to the above-mentioned transposed convolution: the temporal

patterns present in the (random) weights introduce high-frequency

periodicities that call to be compensated by training. Note that with

stride=length, the emerging periodicities are dominated by the stride

and length parameter. Solutions to this issue involve using constant

weights or alternative upsamplers. Sections 3 and 4 focus on describ-

ing alternative upsamplers, since using constant weights can affect

expressiveness—and learning due to a poor (constant) initialization.

a0 w1 a0 w2a0 w0 a1 w1 a1 w2a1 w0

a1a0

WdWd

0.3 -0.010.2 0.3 -0.010.2

11

Input:

Output: WdWd

= [0.2, 0.3, -0.01]Wd

= [w0, w1, w2]Wd

Fig. 2. Transposed convolution: length=stride=3, w/o bias. The

example depicts a periodicity every 3 samples, at the stride length.

http://arxiv.org/abs/2010.14356v2
https://github.com/DolbyLaboratories/neural-upsampling-artifacts-audio
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Fig. 3. Transposed convolution: length=3, stride=2, w/o bias. The

example depicts a periodicity every 2 samples, at the stride length.

Issue (ii): Overlap — It arises because, when stride<length, the up-

sampled representations overlap and add. To understand this issue,

we leave the weight initialization and loss function issues aside and

consider constantly-initialized transposed convolutions with overlap

(as in Figs. 3 and 4). Note that the stride>length setup is generally

not desirable because parts of the upsampled signal are not defined.

Due to the stride<length setup, upsampled representations overlap

and add (see Figs. 3 and 4). This can cause different problems, de-

pending on the situation: partial or full overlap.

– Partial overlap: length is not a multiple of stride. Upsampled

representations are summed up (not averaged) and introduce a high-

frequency periodicity to the signal. This behavior becomes clear if

ones are fed to a length=3, stride=2 transposed convolution filter

constantly initialized with ones (Fig. 3, bottom). A high-frequency

pattern (tonal noise) emerges because the amount of overlap varies

across the upsampled signal due to partial overlap. In addition,

boundary artifacts emerge due to non-constant overlap at the borders.

– Full overlap: length is a multiple of stride. Overlap-related tonal

artifacts are not present because the amount of overlap is constant

across the upsampled signal. This behavior becomes clear if ones are

fed to a length=3, stride=1 transposed convolution filter constantly

initialized with ones (Fig. 4). While full overlap setups do not intro-

duce overlap-related tonal artifacts, boundary artifacts emerge due

to non-constant overlap at the borders. Fig. 4 depicts a full overlap

setup (with stride=1) that barely upsamples the signal—but more

effective full overlap configurations exist (see Fig. 5, row 3).

Fig. 5 (row 1) shows that high-frequencies emerge due to partial

overlap, which can be avoided using a full overlap setup (row 3).

However, as noted above, constant (ones) transposed convolution fil-

ters are rarely used. Fig. 5 (rows 2, 4) illustrates the effect of using

non-constant filters. Note that even when using a full overlap setup, a

periodic pattern appears at the frequency of the stride. Hence, impor-

tantly, the weight initialization issue remains. Also note that bound-

ary artifacts are introduced in both cases: for partial and full overlap

setups. Stoller et al. [2] also described boundary artifacts.

Issue (iii): Loss Function — Loss-related tonal artifacts can appear

when using adversarial losses [1] and/or deep feature losses [16],

since using CNNs as a loss involves a transposed convolution in the

backpropagation step that can cause high-frequency patterns in the

gradient [15]. For example, loss-related high-frequency artifacts are

noticeable when visualizing the learnt features of a neural network

via optimization, since strided convolutions and pooling operations

create high-frequency patterns in the gradient that impact the result-

ing visualizations [17]. Solutions proposed in the feature visualiza-

tion literature involve relying on learnt priors [18] and/or regulariz-

ers [19, 20]. Alternative solutions may consist in not using losses

that involve a backpropagation step that is a transposed convolution.

In the context of adversarial training, Donahue et al. [1] argued that

high-frequency patterns are less common in images than in audio.

Note that tonal artifacts may be similar to the (high) frequencies al-
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Fig. 4. Transposed convolution: length=3, stride=1, w/o bias.

Note: (i) artifacts due to no overlap at the borders, (ii) no periodici-

ties emerge due to full overlap, (iii) it barely upsamples (stride=1).
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Fig. 5. Transposed convolutions, w/o bias, with input set as ones.

ready present in real audio, which makes the discriminator’s objec-

tive more challenging for audio [1]. Accordingly, adversarial losses

might be more effective at removing transposed convolution artifacts

for images than for audio [1]. In addition, they also note that trans-

posed convolution artifacts (tonal noise) will have a specific phase,

allowing the discriminator to learn a trivial policy to detect fake au-

dio. As a solution, they randomly perturb the phase of the discrimi-

nator’s feature maps [1].

Finally, note that the loss function issue remains understudied for

audio (but also for computer vision [15, 21]). Hence, the impact of

training models with such losses has yet to be fully described.

3. INTEPOLATION UPSAMPLERS

Interpolation + convolution was proposed as an alternative to avoid

transposed convolution artifacts [15]. It has been used, e.g., for

music source separation [2], speech enhancement [22] and neu-

ral vocoding [14]. While interpolation (e.g., linear or nearest

neighbor) is effectively upsampling the signal, the subsequent con-

volution further transforms the upsampled signal with learnable

weights. Hence, the problematic transposed convolution is replaced

by interpolation + convolution with the goal to avoid the above-

described tonal artifacts (see Fig. 6 or Odena et al. [15]). Its main

downsides are: (i) interpolation + convolution upsamplers require

two layers instead of a single tranposed convolution layer, which in-

creases the memory and computational footprint of the upsampler1;

and (ii) it can introduce filtering artifacts. Observe the filtering

artifacts in Fig. 6 and 8 (right): these de-emphasize the high-end

1Note that convolutions in interpolation upsamplers operate over longer
(upsampled) signals, which is more expensive than operating over non-
upsampled inputs as done by transposed or subpixel convolutions.
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(a) Nearest neighbor: layer 1
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(d) Linear: layer 1
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(b) Nearest neighbor: layer 2
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(e) Linear: layer 2
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(c) Nearest neighbor: layer 3
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(f) Linear: layer 3

Fig. 6. Interpolation upsamplers: filtering artifacts, but no tonal

artifacts, after initialization. Each consecutive layer (top to bottom):

nearest neighbor or linear interpolation (x2) + CNN (filters of length

9, stride 1). Inputs at 4kHz: music (left), white noise (right).
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(a) Input: ones at 4kHz
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(d) subpixel CNN: layer 2
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(b) subpixel CNN: layer 1
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(e) subpixel CNN: layer 3

Fig. 7. Subpixel CNN: tonal artifacts after initialization. Each con-

secutive layer consists of a CNN (w/ filters of length 3 and stride of

1) + reshape via the periodic shuffle operation (upsample x2).

frequencies of the spectrum. To understand filtering artifacts, note

that interpolations can be implemented using convolutions—by first

interpolating with zeros, an operator known as stretch [23], and later

convolving with a pre-defined (non-learnable) filter. Linear interpo-

lations can be implemented with triangular filters, a sinc2(·) in the

frequency domain; and nearest neighbor interpolation with rectan-

gular filters, a sinc(·) in the frequency domain. The side lobes of the

linear interpolation filter, sinc2(·), are lower than the nearest neigh-

bor ones, sinc(·). For that reason, linear upsampling attenuates more

the high-end frequencies than nearest neighbor upsampling (Fig. 6).

Unless using learnable interpolation filters [2], interpolation filters

cannot be fine-tuned and additional layers (like its subsequent learn-

able convolution) will have to compensate, if necessary, for the

frequency response of the interpolation filter that introduces filter-

ing artifacts. Hence, filtering artifacts color [24] the signal and are

introduced by the frequency response of the interpolation upsampler.

4. SUBPIXEL CONVOLUTIONS

Based on convolution + reshape, subpixel CNN was proposed as

an efficient1 upsampling layer [21, 25]. It has been used, e.g., for

speech enhancement [10], bandwidth extension [12] and voice con-

version [13]. The convolution upsamples the signal along the chan-

nel axis, and reshape is an operation called periodic shuffle [25] that

reorders the convolution output to match the desired (upsampled)

output shape. Subpixel CNNs advantages are: (i) it avoids overlap is-

sues by construction, since convolution + reshape constrain it to dis-

allow overlapping; and (ii) it is computationally efficient because its

convolutions operate over the original (non-upsampled) signal.1 Its

main drawback is that it can introduce tonal artifacts via the peri-

odic shuffle operator (see Fig. 7 or Aitken et al. [21]). Tonal ar-

tifacts emerge because it upsamples consecutive samples based on

convolutional filters having different weights, which can cause peri-

odic patterns [21]. Aitken et al. [21] proposed addressing these ar-

tifacts with an alternative initialization. However, nothing prevents

these weights to degenerate into a solution that produces artifacts

again—i.e., tonal artifacts can emerge during and after training.

5. SPECTRAL REPLICAS

Figs. 6, 7 and 8 are illustrative because several artifacts interact:

(i) tonal and filtering artifacts introduced by problematic upsampling

operations; and (ii) spectral replicas due to the bandwidth extension

performed by each upsampling layer. From signal processing, we

know that spectral replicas appear when discretizing a signal. Ac-

cordingly, when upsampling discrete signals one has to be vigilant

of spectral replicas. Given that upsampling layers are effectively

performing bandwidth extension, spectral replicas emerge while up-

sampling (see Fig. 6, left). Importantly, spectral replicas introduced

by deeper layers (e.g., layers 2 & 3) also include replicas of the arti-

facts introduced by previous layers (e.g., layer 1 in Figs. 7 and 8):

– Spectral replicas of tonal artifacts. Upsampling tonal artifacts

are introduced at a frequency of “sampling rate / upsampling factor”,

the sampling rate being the one of the upsampled signal. For ex-

ample: layer 1 outputs in Figs. 7 and 8 (left) are at a sampling rate

of 8kHz, because the 4kHz input was upsampled x2. Accordingly,

these upsampling layers introduce a tone at 4kHz. When upsampling

with upcoming layers, the spectral replicas of previously introduced

tones are exposed—plus the employed upsampler introduces new

tones. In Figs. 7 and 8 (left), the spectral replicas (at 8, 12, 16 kHz)

interact with the tones introduced by each layer (at 4, 8, 16 kHz).

– Spectral replicas of filtering artifacts. Similarly, filtering arti-

facts are also replicated when upsampling—see Figs. 1 (c), 6 (right),

8 (right). This phenomenon is clearer in Fig. 8 (right) because the

interleaved convolutions in Fig. 6 (right) further color the spectrum.

– Spectral replicas of signal offsets. Deep neural networks can in-

clude bias terms and ReLU non-linearities, which might introduce an

offset to the resulting feature maps. Offsets are constant signals with

zero frequency. Hence, its frequency transform contains an energy

component at frequency zero. When upsampling, zero-frequency

components are replicated in-band, introducing audible tonal arti-

facts. These signal offset replicas, however, can be removed with

smart architecture designs. For example, via using the filtering arti-

facts (introduced by interpolation upsamplers) to attenuate the spec-

tral replicas of signal offsets. Fig. 8 (right) shows that linear (but also

nearest neigbor) upsamplers attenuate such problematic frequencies,

around “sampling rate / upsampling factor” where those tones ap-

pear. Further, minor modifications to Demucs (just removing the

ReLUs of the first layer2 and the biases of the model) can also de-

crease the tonal artifacts after initialization (Fig. 1 vs. Fig. 9). While

the modified Demucs architectures can still introduce tonal artifacts,

via the problematic upsamplers that are used, the energy of the re-

maining tones is much less when compared to the tones introduced

by the spectral replicas of signal offsets (Fig. 1 vs. Fig. 9). Note that

mild tonal artifacts could be perceptually masked, since these are

hardly noticeable under the presence of wide-band noise (Fig. 9).

2Due to the skip connections in Demucs, the first layer significantly af-
fects the output. Also, removing all ReLUs could negatively affect training.
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(a) Transposed CNN: layer 1
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(d) Linear: layer 1
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(b) Transposed CNN: layer 2
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(e) Linear: layer 2
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(c) Transposed CNN: layer 3

0 0.5 1 1.5 2 2.5 3
time (seconds)

0

10000

fr
eq

ue
nc

y 
(H

z)
-100dB

-50dB

+0dB

(f) Linear: layer 3

Fig. 8. Transposed CNN, linear interpolation: tonal and filter-

ing artifacts, after initialization. Transposed convolution layers:

length=4, stride=2. Linear interpolation layers: without the inter-

leaved convolutions. Inputs at 4kHz: ones (left), white noise (right).
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(a) Demucs (original)

modification
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(d) Demucs (subpixel CNN)

modification

Fig. 9. Demucs modification after initialization: no ReLUs in the

first layer and no biases, to avoid spectral replicas of signal offsets.

In signal processing, spectral replicas are normally removed with

low-pass filters [23]. Yet, upsampling layers are oftentimes stacked

without those—so that upsamplers process the spectral replicas gen-

erated by previous upsampling layers [2,3]. Note the effect of stack-

ing upsamplers in Fig. 6: the model colors [24] the spectral replicas

from previous layers. For wide-band synthesis, however, it seems

natural to allow that high-frequencies are available along the model.

6. THE ROLE OF TRAINING

So far, we discussed that upsampling artifacts emerge because up-

sampling operators with problematic initializations are stacked one

on top of another. However, nothing prevents the model from learn-

ing to compensate such artifacts. While some did not use, e.g., trans-

posed CNNs to avoid tonal artifacts [2, 22]—others aim at learning

to correct these problematic initializations via training [3, 10]. We

found that most speech upsamplers are based on transposed CNNs,

with just a few exceptions [10, 14, 22]. Only from the speech litera-

ture, we were unable to assess the impact of training one upsampler

or another. Yet, music source separation works provide additional

insights. WaveUnets (autoencoders based on linear upsamplers) are

widely used, but their performance is poor compared to state-of-the-

art models: ≈3 vs. ≈5 dB SDR (signal-to-distortion ratio), see Ta-

ble 1. However, Demucs (a modified waveUnet relying on trans-

posed convolutions) achieved competitive results: ≈5 dB SDR. Ac-

cording to the literature, then, it seems that transposed CNNs are

preferrable: these are widely used and achieve competitive results.

Here, we further study the role of learning when training neu-

ral upsamplers under comparable conditions. We study Demucs-like

models with 6 encoding blocks (with strided CNN, ReLU, GLU) and

6 decoding blocks (with GLU, full overlap transposed CNN, ReLU),

connected via skip connections [3], with two LSTMs in the bottle-

neck (3200 units each). Strided and transposed convolution layers

have 100, 200, 400, 800, 1600, 3200 filters of length=8 and stride=4,

respectively [3]. For our experiments, we change the transposed con-

Music source separation (MUSDB [27] benchmark) SDR ↑ epoch #parm

Demucs-like (Fig. 1, b): transposed CNN (full-overlap) 5.35 319 s 703M

Demucs-like (Fig. 1, c): nearest neighbor interpolation 5.17 423 s 716M

Demucs-like: linear interpolation 4.62 430 s 716M

Demucs-like (Fig. 1, d): subpixel CNN 5.38 311 s 729M

Modified (Fig. 9, a): transposed CNN (full-overlap) 5.37 326 s 703M

Modified (Fig. 9, b): subpixel CNN 5.38 315 s 729M

WaveUnet [2]: linear intepolation 3.23 - 10M

Demucs [3]: transposed convolution (full-overlap) 5.344 - 648M

OpenUnmix [30]: spectrogram-based 5.36 - 8.9M

Sams-net [31]: spectrogram-based 5.65 - 3.7M

Table 1. Demucs-like models with different upsamplers (top),

against the state-of-the-art (bottom). SDR (dB): the higher the better.

volutions in Demucs for the different upsampling layers listed in Ta-

ble 1 (top). Like the original Demucs, we use: very large models,

of ≈700M parameters [3]; weight rescaling, so that input and output

signals are of the same magnitude after initialization [3]; and their

data augmentation schema, creating new mixes on-the-fly [3, 26].

We also use the MUSDB [27] benchmark, that is composed of stereo

songs at 44.1 kHz. For each song, four stereo sources are extracted:

vocals, bass, drums, other. In Table 1 we report the average signal-

to-distortion ratio (SDR) over all sources [28].3 We optimize the

L1 loss with Adam [29] for 600 epochs at a learning rate of 0.0002

(0.0001 for the modified subpixel CNN) with x4 v100 GPUs, us-

ing a batch size of 32. Despite their architectural issues and poor

initialization, transposed and subpixel CNNs achieve the best SDR

scores (see Table 1). However, differently from what the literature

conveys, interpolation-based models follow closely—with nearest

neighbor upsamplers obtaining the best results. The proposed modi-

fications (without strong tones after initialization, see Fig. 9) perform

similarly to their poorly initialized counterparts. These results unveil

the role of training: it helps overcoming the noisy initializations,

caused by the problematic upsampling operators, to get state-of-the-

art results. Informal listening, however, reveals that tonal artifacts

can emerge even after training, especially in silent parts and with

out-of-distribution data (e.g., with sounds and conditions not seen

during training). We find that nearest neighbor and linear interpo-

lation models do not have this disadvantage, although they achieve

worse SDR scores.

7. SUMMARY & REMARKS

Upsamplers are a key element for developing computationally ef-

ficient and high-fidelity neural audio synthesizers. Given their im-

portance, together with the fact that the audio literature only pro-

vides sparse and unorganized insights [1,2,4,10], our work is aimed

at advancing and consolidating our current understanding of neural

upsamplers. We discussed several sources of tonal artifacts: some

relate to the transposed convolution setup or weight initialization,

others to architectural choices not related to transposed convolutions

(e.g., with subpixel CNNs), and others relate to the way learning is

defined (e.g., with adversarial or deep feature losses). While several

works assume to resolve the tonal artifacts via learning from data,

others looked at alternative possibilities which, by construction, omit

tonal artifacts—these include: interpolation upsamplers, that can in-

troduce filtering artifacts. Further, upsampling artifacts can be em-

phasized by deeper layers via exposing their spectral replicas. We

want to remark that any transposed convolution setup, even with full

or no overlap, produces a poor initialization due to the weights ini-

tialization issue. Further, subpixel CNNs can also introduce tonal

artifacts. In both cases, training is responsible to compensate for any

upsampling artifact. Finally, the interpolation upsamplers we study

do not introduce tonal artifacts, what is perceptually preferable, but

they achieve worse SDR results and can introduce filtering artifacts.

3Following previous works [2, 3]: for every source, we report the median
over all tracks of the median SDR over each test track of MUSDB [27].

4With randomized equivariant stabilization: 5.58 dB SDR [3]. We do not
use this technique for simplicity, since it does not relate to the training phase.



8. APPENDIX: A NOTE ON SPECTROGRAMS

We compute the above spectrograms (STFT: short-time fourier trans-

form) with Librosa [32], that features a center flag in its STFT im-

plementation. If center=True, each frame is centered around the

given time-stamp and the signal is padded if necessary. As a result

of this padding, STFTs include boundary artifacts—but the temporal

alignment is precise. Note this behaviour in Fig. 10 (right), where

boundary artifacts are introduced but signals are perfectly aligned in

the temporal axis. Alternatively, if center=False, the signal is not

padded and frames are aligned to the left. Note this behaviour in

Fig. 10 (left) where no boundary artifacts are introduced—but sig-

nals are aligned to the left, and white stripes appear on the right. For

our study we set center=False, because we want to avoid mixing the

boundary artifacts introduced by the STFT with potential boundary

artifacts introduced by upsampling layers.
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(e) Transposed CNN: layer 2
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(c) Transposed CNN: layer 3
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(f) Transposed CNN: layer 3

Fig. 10. Transposed CNNs (length=4, stride=2): tonal artifacts after

initialization. Inputs at 4kHz: ones. As Fig. 8, with different STFT

setups. Left: STFT (center=False). Right: STFT (center=True).

Finally, white stripes are wider in layers 1 and 2 because we use the

same STFT setup (n fft=2048, hop length=512) for all signals, even

though each layer operates at a different sampling rate (8kHz, 16kHz

and 32kHz respectively).
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[8] Joan Serrà, Santiago Pascual, and Carlos Segura Perales,

“Blow: a single-scale hyperconditioned flow for non-parallel

raw-audio voice conversion,” in NeurIPS, 2019.

[9] Santiago Pascual, Antonio Bonafonte, and Joan Serrà, “Segan:
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