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ABSTRACT

For various speech-related tasks, confidence scores from a speech
recogniser are a useful measure to assess the quality of transcrip-
tions. In traditional hidden Markov model-based automatic speech
recognition (ASR) systems, confidence scores can be reliably ob-
tained from word posteriors in decoding lattices. However, for an
ASR system with an auto-regressive decoder, such as an attention-
based sequence-to-sequence model, computing word posteriors is
difficult. An obvious alternative is to use the decoder softmax prob-
ability as the model confidence. In this paper, we first examine how
some commonly used regularisation methods influence the softmax-
based confidence scores and study the overconfident behaviour of
end-to-end models. Then we propose a lightweight and effective
approach named confidence estimation module (CEM) on top of an
existing end-to-end ASR model. Experiments on LibriSpeech show
that CEM can mitigate the overconfidence problem and can produce
more reliable confidence scores with and without shallow fusion of a
language model. Further analysis shows that CEM generalises well
to speech from a moderately mismatched domain and can potentially
improve downstream tasks such as semi-supervised learning.

Index Terms— confidence scores, end-to-end ASR

1. INTRODUCTION

Confidence scores have been an intrinsic part of automatic speech
recognition (ASR) systems [1–3]. Many speech-related applications
depend on high-quality confidence scores to mitigate error from
speech recognisers. For example, in semi-supervised learning and
active learning, utterances with highly confident hypotheses are
selected to further improve ASR performance [4–6]. Confidence
scores are also used in dialogue systems where queries with low
confidence may be returned to users for clarification [5]. As an
indication of ASR uncertainty, confidence scores can play an role in
speaker adaptation[7], and system combination [8].

In conventional HMM-based systems, reliable confidence scores
can be easily obtained by computing word posterior probabilities
from compact representations of the hypotheses space, e.g. lattices
or confusion networks [8, 9]. Improved confidence estimation can
be achieved by using model-based approaches, such as conditional
random fields[10], recurrent neural networks [11, 12] and graph neu-
ral networks [13], or leveraging more related information including
phonetics, word/phone duration and language models [2, 14].

Recently, end-to-end speech recognition has achieved promis-
ing performance over the conventional systems [15]. “End-to-end

∗Work was done while the author interned at Google.

systems” refers to end-to-end differentiable and trainable neural net-
works, in contrast to modular systems with separate acoustic mod-
els, language models and token passing decoders. As end-to-end
speech recognition has various modelling and engineering advan-
tages, they are becoming more widely adopted [16]. One class of the
end-to-end systems is attention-based sequence-to-sequence mod-
els [17, 18]. The auto-regressive decoder in end-to-end systems im-
plies that compact representations like lattices cannot be constructed
for attention-based models, except using specific decoder architec-
tures and heuristics [19]. Consequently, computing word posteriors
in the end-to-end hypothesis space becomes prohibitively expensive.
A greedy approximation would be taking the softmax probability
from each step of the decoder as the confidence scores for each to-
ken [20]. However, the quality of confidence estimation by softmax
probabilities may be very poor [21].
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Fig. 1: Filtering behaviour of a conventional HMM-based system
and an attention-based sequence-to-sequence model based on con-
fidence scores. Utterances with confidence higher than a threshold
(x-axis) are selected, and word error rate (WER) of the filtered sub-
set (y-axis) are plotted. Both systems are trained on LibriSpeech
100-hour data and the test-clean set is used for filtering.

This issue is illustrated by Fig. 1 which is a plot used for data
selection for semi-supervised learning [20]. The plot shows that
if all utterances are selected, then a conventional system and an
attention-based sequence-to-sequence model have similar perfor-
mance (7∼8% WER). As the confidence threshold increases, the
WER of the conventional system monotonically decreases. How-
ever, for the end-to-end model, a higher threshold does not always
mean a reduced WER. The spike in Fig. 1 indicates that the end-to-
end model is overconfident based on softmax probabilities.

To address the overconfidence issue, the confidence estima-
tion module (CEM) is proposed for attention-based sequence-to-
sequence models in Sec. 2. Sections 3 and 4 describes the setup and
experiments that demonstrate the effectiveness of CEM. Section 5
shows the generalisation performance and impact on downstream
tasks of the proposed method. Conclusions are drawn in Sec. 6.
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2. CONFIDENCE ESTIMATION MODULE

An attention-based sequence-to-sequence model, such as the Listen,
Attend and Spell (LAS) model [18], generally consists of an encoder,
an attention mechanism and a decoder. As shown in the green block
in Fig. 2, for an input utterance x1, . . . ,xL, the encoder first trans-
forms the input feature for each frame

e1:L = ENCODER(x1:L). (1)

Then at a decoding step t,

at = ATTENTION(at−1,dt−1, e1:L), (2)
dt = DECODER(at,dt−1, EMB(yt−1)), (3)

p(yt|y1:t−1,x1:L) = SOFTMAX(dt). (4)

where y is a label token normally representing a grapheme or a word
piece [15] for ASR tasks. At the token level, confidence scores for
ASR are defined as the probability of the token being correct. If the
recogniser is very confident about the output token, then the corre-
sponding confidence score should be close to 1. Word or utterance
level confidence scores can be obtained by taking the average of to-
kens within a word or an utterance. For attention-based sequence-to-
sequence models, each step in the auto-regressive decoder is treated
as a classification task over all possible output tokens. However,
there is a subtle difference between calibration for standard classi-
fication and confidence scores for sequences. For a hypothesis se-
quence, each token can either be correct, a substitution or an inser-
tion. Because of the auto-regressive nature of the decoder and the
use of teacher forcing approach for training, calibration behaviour
for sequences with an incorrect history is uncertain. Furthermore,
the model can be poorly calibrated when the model becomes very
deep and large in pursuit of state-of-the-art performance [22].

To obtain high-quality confidence scores while keeping the
model performance, the confidence estimation module (CEM) is
proposed as shown in the red block in Fig. 2. The CEM is designed
to be a lightweight module that can be easily configured on top of
any attention-based sequence-to-sequence model. The CEM gathers
information from the attention mechanism, the decoder state and the
current token embedding which is fed into a fully connected (FC)
layer. Then the sigmoid output layer generates a value between 0
and 1 that indicates the confidence score pt for the current token, i.e.

pt = SIGMOID(FC(at,dt, EMB(yt))). (5)

Assuming there is an existing well-trained LAS model, n-best
hypotheses can be generated by running a forward pass through the
encoder and running a beam search through the decoder. Then the
edit distance between each hypothesis sequence can be computed
with respect to the ground truth reference sequence. The alignment
from the edit distance computation can be used as the target for con-
fidence if correct tokens are assigned as 1 while substituted or in-
serted tokens are assigned as 0. For example, if the ground truth se-
quence is “A B C D.” and one of the hypotheses is “A C C D.”,
then the binary target sequence is c = [1, 0, 1, 1]. For each of the
n-best hypotheses, the CEM is trained to minimise the binary cross
entropy between the estimated confidence p and the target c.

L(c,p) = − 1

T

T∑
t=1

(
ct log(pt) + (1− ct) log(1− pt)

)
. (6)

The total loss for an utterance is the aggregated confidence estima-
tion loss for all the n-best hypotheses. During training, all parame-
ters for the attention-based sequence-to-sequence model are fixed.
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p(yt|y1:t�1,x1:L)

Fig. 2: Confidence estimation module (CEM) for attention-based
sequence-to-sequence models.

3. EXPERIMENTAL SETUP

3.1. Evaluation Metrics

For each hypothesis, an alignment between the hypothesis and the
corresponding ground truth can be obtained by computing the Lev-
enshtein distance. If the hypothesis token is the same as the aligned
reference token, the target confidence should be 1 and 0 otherwise.

To measure the quality of confidence scores, normalised cross-
entropy (NCE) is a frequently used metric [23]. If we gather con-
fidence scores for all tokens p = [p1, . . . , pN ] where pn ∈ [0, 1]
and their corresponding target confidence c = [c1, . . . , cN ] where
cn ∈ {0, 1}, NCE is given by

NCE(c,p) =
H(c)−H(c,p)

H(c)
(7)

where H(c) is the entropy of the target sequence and H(c,p) is the
binary cross-entropy between the target and the estimated confidence
scores. When confidence estimation is systematically better than the
word correct ratio (

∑N
n=1 cn/N ), NCE is positive. For perfect con-

fidence scores, NCE is 1. NCE measures how close the confidence
score is to the the probability of the recognised word being correct.

However, in applications such as keyword spotting, it is the or-
der of tokens ranked by confidence scores that matters. In these
cases, operating points have to be chosen where hypotheses with
confidence scores above a certain threshold p̃ are deemed to be cor-
rect and incorrect otherwise. Precision-recall (P-R) curves are com-
monly used to illustrate the operating characteristics [24].

precision(p̃) =
TP(p̃)

TP(p̃) + FP(p̃)
, recall(p̃) =

TP(p̃)

TP(p̃) + FN(p̃)
.

(8)
where TP is true positives, FP is false positives and FN is false nega-
tives. Normally, when the threshold p̃ increases, there are fewer false
positives and more false negatives, which leads to higher precision
and lower recall. The trade-off behaviour between precision and re-
call yields a downward trending curve from the top left corner to the
bottom right corner. Therefore, the area under the curve (AUC) can
measure the quality of the confidence estimator, which has a max-
imum value of 1. It is worth noting that two confidence estimators
can have the same AUC value but different NCE values.
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3.2. Data
The LibriSpeech train-clean-100 subset [25] is used for model train-
ing. The 100-hour subset reflects a typical use case of confidence
scores where the WERs are moderately high and the amount of
supervised data is limited. The dev and test sets are dev-clean/dev-
other and test-clean/test-other sets. The input features are 80-
dimension filterbank coefficients with ∆ and ∆∆. The output
targets are 16k word-pieces tokenised from the full LibriSpeech
training set using a WPM model [26]. All experimental results in
Sec. 4 on LibriSpeech are on the test-clean/test-other sets.

3.3. Baseline Model
The baseline model is an LAS model trained using the open-source
Lingvo toolkit [27]. The encoder consists of a 2-layer convolu-
tional neural network with max-pooling and stride of 2 and a 4-layer
bi-directional long short-term memory (LSTM) network with 1024
units in each direction. The decoder has a 2-layer uni-directional
LSTM network with 1024 units. The total number of parameters
in the baseline model is 184 million. The optimiser is Adam with
learning rate 0.001 and the batch size is 512. During training, five
regularisation techniques have been adopted, including dropout [28]
of 0.1 on the decoder, uniform label smoothing [29] of 0.2, Gaus-
sian weight noise [30] with zero mean and a standard deviation of
0.05 for all model parameters after 20k updates, SpecAugment [31]
with 2 frequency masks with mask parameter F = 27, 2 time masks
with mask parameter T = 40, and time warping with warp parame-
ter W = 40, and an exponential moving average (EMA) [32] of all
model parameters were used during training.

4. EXPERIMENTAL RESULTS

4.1. Effect of Regularisation Methods on Confidence Scores
Many training techniques have been developed for deep neural net-
works. They normally reduce the extent to which the model overfits
to the training data and improve generalisation of the model. The
state-of-the-art performance is often achieved when a large model
is trained using aggressive regularisation [15]. As for the baseline
setup described in Sec. 3.3, five techniques are used. Broadly speak-
ing, regularisation methods can be classified into three categories,
i.e. augmenting input features (SpecAugment), manipulating model
weights (dropout, EMA & weight noise), and modifying output tar-
gets (label smoothing).

WER ↓ AUC ↑ NCE ↑

baseline 7.5/21.6 0.976/0.912 -0.195/ 0.131

− dropout 7.8/22.0 0.977/0.916 -0.204/ 0.130
− EMA 8.2/24.8 0.974/0.903 -0.189/ 0.120
− label smoothing 10.6/24.6 0.985/0.950 0.106/-0.131
− weight noise 12.9/25.8 0.978/0.925 -0.459/-0.012
− SpecAugment 10.8/34.3 0.952/0.911 0.012/ 0.160

Table 1: ASR and token-level confidence performance by removing
a regularisation method from the baseline model on test-clean/test-
other. Confidence scores are based on softmax probabilities.

In Table 1, the ASR results and confidence performance of five
additional models are shown, where each model is trained by re-
moving one regularisation technique from the baseline setup. As
expected, removing any of these regularisation methods results in
an increased WER. However, the confidence performance may not

worsen when a regularisation method is excluded. Also, AUC and
NCE values do not always change in the same direction. Although
disentangling the contribution of each technique is challenging, Ta-
ble 1 shows that augmenting input features and manipulating model
weights can generally improve the confidence performance for at
least one metric. Interestingly, by removing label smoothing, AUC
is significantly better than the baseline and the gap of NCE values
between test-clean and test-other sets is reversed. This shows that
although softmax probabilities can be directly used as confidence
scores, they can be heavily affected by regularisation techniques, es-
pecially if output targets are modified.

4.2. Confidence Estimation Module

To keep good ASR performance while having reliable confidence
scores, a dedicated CEM can be trained as in Sec. 2. The CEM
is added on top of the baseline model. During the CEM training,
more aggressive SpecAugment (10 time masks with mask parameter
T = 50) is used to increase the WER on the training set for more
negative training samples. For each utterance, 8-best hypotheses are
generated on-the-fly and are aligned with the reference to obtain the
binary training targets. The CEM only has one fully-connected layer
with 256 units. The number of additional parameters is 0.4% of the
baseline LAS model. Piece-wise linear mappings (PWLMs) [33]
are estimated on dev-clean/dev-other and are then applied to test-
clean/test-other, so that the confidence scores better match with to-
ken or word accuracy. Since PWLM is monotonic, NCE is boosted
while AUC remains unchanged as the relative order of confidence
scores is unchanged.

AUC ↑ NCE ↑ NCE ↑
(w/o PWLM) (w/ PWLM)

token
softmax 0.976/0.912 -0.195/0.131 0.166/0.172

CEM 0.990/0.958 0.189/0.019 0.344/0.275

word
softmax 0.981/0.927 -0.180/0.139 0.269/0.195

CEM 0.990/0.962 0.192/0.039 0.350/0.270

Table 2: Comparison of confidence scores between using softmax
probabilities and using the CEM on the baseline model. The first
row corresponds to the baseline in Table 1.

Table 2 reports the confidence metrics at the token level and the
word level. The word-level confidence is the average of the token-
level ones if a word consists of multiple tokens. The AUC is im-
proved at both token and word levels by using CEM. Unlike softmax
probabilities, NCE values are all positive for CEM. After PWLM,
CEM yields much higher NCE values than softmax probabilities.
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Fig. 3: Precision-recall curves for token-level confidence scores on
LibriSpeech test-clean and test-other sets.
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However, AUC values do not show the whole picture. As shown
in Fig. 3, the P-R curves of softmax and CEM are drastically dif-
ferent. A sharp downward spike at the high-confidence region in
Fig. 3(a) corresponds to a low precision and a low recall. In other
words, softmax probabilities are overconfident for some incorrect
tokens, which also explains the spike shown in Fig. 1. CEM, how-
ever, suffers little from overconfidence as Fig. 3(b) depicts the de-
sired trade-off between precision and recall. Overall, the CEM is a
more reliable confidence estimator under both metrics.

4.3. Effect of Language Model Fusion on Confidence Scores
For end-to-end ASR, shallow fusion of a language model (LM) [34]
is commonly used to improve ASR performance during decoding.
The effect of shallow fusion on confidence estimation is investigated.
The language model used is a three-layer LSTM network with width
4096 trained on the LibriSpeech LM corpus, which shares the same
word-piece vocabulary as the attention-based sequence-to-sequence
model. To take LM information for confidence estimation, the input
to the CEM is extended by the LM probability for the current token.
Other setups are the same as Sec. 4.2.

WER ↓ AUC ↑ NCE ↑

baseline
softmax

7.5/21.6
0.981/0.927 0.269/0.195

CEM 0.990/0.962 0.350/0.270

+ LM
softmax

6.8/19.8
0.981/0.928 0.103/0.109

CEM 0.991/0.966 0.337/0.263

Table 3: ASR and word-level confidence performance for models
with and without RNNLM shallow fusion (with PWLM).

Table 3 shows the word-level confidence scores after PWLM for
both softmax probabilities and CEM. Although WERs on test-clean
and test-other decreased by 8∼9% relatively, there is no clear im-
provement on AUC and even substantial degradation for NCE. By
comparing the first and second blocks of Table 3, the CEM improves
the quality of confidence estimation more significantly when an ad-
ditional LM is used. The contrast of P-R curves between softmax
and CEM with LM shallow fusion is similar to Fig. 3.

5. ANALYSIS

5.1. Generalisation to a Mismatched Domain
Since CEM is a model-based approach and the training data for CEM
is the same as the ASR, the model is naturally more confident on the
training set. Although the mismatch between training and test for
CEM is mitigated by having more aggressive augmentation during
training and applying PWLMs estimated on dev sets during testing,
it is still unclear how well the confidence scores from CEM gener-
alises to data from a mismatched domain.

WER ↓ AUC ↑ NCE ↑

baseline
softmax

18.7
0.935 0.230

CEM 0.970 0.280

+ LM
softmax

17.7
0.933 0.159

CEM 0.965 0.266

Table 4: ASR and confidence performance on WSJ eval92. PWLM
is estimated on LibriSpeech dev-other set. LM used is trained on
LibriSpeech LM corpus as in Sec. 4.3.

Wall Street Journal (WSJ) [35], a dataset of clean read speech
of news articles, is in a moderately mismatched domain compared
to LibriSpeech in terms of speaker, style and vocabulary. In Table 4,
WSJ eval92 test set is fed into the same setup as in Sec. 4.3, where
all models are trained on LibriSpeech. Similar to observations in
Table 3, shallow fusion worsens the confidence estimation by soft-
max probabilities despite reduced WER. CEM improves the quality
of confidence estimation significantly with or without LM.

5.2. Implications for Downstream Tasks
Confidence scores are widely used to select unlabelled data for
semi-supervised learning [20] to improve ASR performance. First, a
speech recogniser is trained using the limited transcribed data. Then
the recogniser transcribes the unlabelled data, which can be taken as
noisy labels to train the existing model further. However, erroneous
automatic transcription can hurt the model. Assuming confidence
scores can reflect the word error rate well, filtering out utterances
with low confidence can be beneficial to semi-supervised training.
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Fig. 4: WERs of filtered utterances w.r.t. confidence thresholds for
softmax and CEM with LM shallow fusion.

Similar to Fig. 1 and plots used for semi-supervised learn-
ing [20], Fig. 4 shows the WER of the filtered utterances whose
confidence scores are above the corresponding threshold. If confi-
dence scores strongly correlate with WER, a higher threshold will
filter a subset with lower WER. In Fig. 4(a), sharp spikes at the high
confidence region clearly indicates overconfidence based on softmax
probabilities. In contrast, curves for all three test sets in Fig. 4(b)
are monotonically going down without spikes, which shows that
confidence scores by CEM match WER much more closely.

6. CONCLUSIONS

Using softmax probabilities of attention-based sequence-to-sequence
models for confidence estimation is not reliable. To this end, the
lightweight confidence estimation module (CEM) is proposed. The
effectiveness of CEM is demonstrated with and without shallow
fusion of a language model. Furthermore, the performance of CEM
can generalise well on a slightly mismatched domain and may
benefit various downstream tasks, such as adaptation [7], semi-
supervised training [20] and model combination [36, 37]. A similar
module to CEM can also be introduced for deletion prediction as
deletion errors are not within the scope of confidence estimation
but can be important for many applications [12, 38]. With minimal
modification, CEM is also applicable to recurrent neural network
transducer (RNN-T) for speech recognition [39].
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