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ABSTRACT

In real rooms, recorded speech usually contains reverberation,
which degrades the quality and intelligibility of the speech.
It has proven effective to use neural networks to estimate
complex ideal ratio masks (cIRMs) using mean square error
(MSE) loss for speech dereverberation. However, in some
cases, when using MSE loss to estimate complex-valued
masks, phase may have a disproportionate effect compared
to magnitude. We propose a new weighted magnitude-phase
loss function, which is divided into a magnitude component
and a phase component, to train a neural network to estimate
complex ideal ratio masks. A weight parameter is introduced
to adjust the relative contribution of magnitude and phase
to the overall loss. We find that our proposed loss func-
tion outperforms the regular MSE loss function for speech
dereverberation.

Index Terms— speech dereverberation, complex ideal ra-
tio mask, deep neural network, loss function

1. INTRODUCTION

Speech captured in indoor environments usually contains re-
verberation components. It has been shown that reverberation
has a detrimental effect on speech quality, and can degrade
speech intelligibility for both hearing impaired listeners and
normal hearing listeners [1]. Therefore, speech dereverbera-
tion plays an important role in processing speech signals pro-
duced in reverberant environments.

Due to recent advances in deep learning, approaches
based on deep neural networks (DNNs) have been widely
introduced in speech processing. For instance, regression
models [2], feed forward neural networks [3], and recurrent
neural networks (RNNs) [4] have been proposed for speech
enhancement and dereverberation. These and many other
approaches often enhance only the magnitude spectrogram
and use the unprocessed noisy phase when reconstructing
estimated speech [5]. However, the importance of phase
has recently been discussed in [6], and phase processing
in speech processing has been gaining increasing attention.
The Griffin-Lim Algorithm [7] is a widely-adopted phase
processing algorithm that tries to find the closest consistent
spectrogram to a target. Following this idea, various phase
processing approaches have been proposed [8]. Apart from

these methods that focus on estimating phase, Williamson
and Wang [9] proposed to estimate complex ideal ratio masks
(cIRMs) to jointly modify magnitude and phase. The com-
plex ratio mask has proven to be effective in speech denoising
and dereverberation [9] [10], and has also been adopted in
other speech enhancement approaches [11] [12].

Williamson and Wang [9] adopted a feed forward neural
network with fully connected layers to estimate cIRMs with
a mean square error (MSE) loss function. When estimating
masks in the complex domain, MSE measures the Euclidean
distance in the complex plane between the targets and the es-
timates. When computing the Euclidean distance, phase may
in some case have more impact than magnitude, which can
lead to estimates with a small Euclidean distance but a large
magnitude difference compared to the target. However, it is
generally considered that most of the insight about the struc-
ture of the speech is obtained from the magnitude [5], so we
assume that the magnitude is generally more important than
the phase. If this is true, estimates with a small magnitude dif-
ference should be favored, and the magnitude should weigh
more than the phase when measuring the overall loss.

In this paper, we propose a loss function designed to mea-
sure the loss in magnitude and phase separately, and the rel-
ative contribution of phase can be adjusted by introducing a
weight coefficient in the loss function. We train a convolu-
tional recurrent neural network (CRNN) [13][14] to estimate
cIRMs using our proposed loss function, and investigate the
performance of our loss function as well as the impact of mag-
nitude and phase in this context.

This paper is organized as follows. The cIRMs and our
proposed loss function are introduced in Section 2 and Sec-
tion 3 respectively. In Section 4, the experiments and the re-
sults are presented, and Section 5 concludes this paper.

2. COMPLEX IDEAL RATIO MASK FOR SPEECH
DEREVERBERATION

The complex ideal ratio mask M(t, f) at frame t and fre-
quency bin f is defined as [15]

M(t, f) =
S(t, f)

Y (t, f)
=
|S(t, f)|
|Y (t, f)|

ej(θs(t,f)−θy(t,f)) (1)

where S(t, f) and Y (t, f) are the complex spectrograms of
the desired signal and the observed signal at time frame t and



frequency bin f, and θs and θy are their respective phases.
This mask is defined in the complex domain, and can modify
both magnitude and phase of the spectrogram, and hence can
theoretically fully recover the desired signals.

The MSE loss function used to estimate cIRMs is defined
as follows

LMSE =
1

2N

∑
t

∑
f

[(MR(t, f)− M̂R(t, f))2

+ (MI(t, f)− M̂I(t, f))2]

(2)

where MR(t, f) and MI(t, f) are real and imaginary compo-
nents of target masks, and M̂R(t, f), M̂I(t, f) are their esti-
mates. The MSE loss measures the Euclidean distance be-
tween the target vector and its estimate in the complex do-
main.

Let us consider the situation shown in Figure 1(a), where
xa and xb are estimates of the same target s. The estimate
xb successfully estimates the magnitude |s|, but is a poor es-
timate of the phase. In comparison, the phase of xa is close
to the target, but the difference in magnitude is rather large.
The Euclidean distance between s and xa is much smaller
than that between s and xb, so a neural network trained using
MSE loss is more likely to favor an estimate with a small Eu-
clidean distance but a large difference in magnitude such as
xa.

However, it is generally considered that a large propor-
tion of the insight about the structure of the speech signal
can be obtained from the magnitude spectrogram [5]. There-
fore, we assume the magnitude is more important than phase
in this context, and estimates with smaller magnitude differ-
ence, such as xb, may be preferred. Neural networks trained
with the MSE loss would not consider magnitude errors more
important than phase errors, and would possibly degrade the
overall performance.

3. PROPOSED APPROACH

3.1. Weighted magnitude-phase loss function

To overcome this limitation, we look at this problem from a
geometry point of view. As illustrated in Figure 1(b), the loss
in magnitude and phase can be represented by the lengths of
BB′ and AB′ respectively. The estimate x could approach
the target s in two steps, closing the gap in magnitude and
rotating to reduce the angle θ.

To create a weighted magnitude-phase (WMP) loss func-
tion, we divide the loss function into two parts: a magnitude
part BB′, and a phase part AB′. We would like the mag-
nitude error BB′ to be considered more important than the
phase error AB′, so a weight parameter is introduced to re-
duce the importance of phase error. This loss function can be

Fig. 1: (a) Illustration of MSE loss function. The black arrow
is the target vector s while the blue dash arrow and the red
dot arrows are two estimates xa and xb respectively. Two dot-
dashed lines indicate the values of MSE loss of corresponding
estimates. (b) Interpretation of proposed loss function. Vec-
tor s is the target and x is the estimate. Line AB′ and BB′

indicate the value of phase part and magnitude part in loss
function respectively.

formulated as follows

LWMP =
1

2N

∑
t

∑
f

(|M(t, f)| − |M̂(t, f)|)2

+ α

[
|M(t, f)| sin

(
θM (t, f)− θ̂M (t, f)

2

)]2 (3)

where M and M̂ are the complex-valued target mask and its
estimate, and θM , θ̂M are their corresponding phases. The
parameter α is introduced as a weight parameter to adjust
the contribution that the phase part makes to the the overall
loss. The phase difference θ = θM − θ̂M can be wrapped
into [−π, π]. When the wrapped phase difference is π or −π,
the value of sin2

(
θM (t,f)−θ̂M (t,f)

2

)
is maximized at 1, and

gradually decreases to 0 when the wrapped phase difference
approaches 0. We also include the magnitude of target sig-
nal |M(t, f)| in the second term of Equation (3) so that the
phases in time-frequency (T-F) units where the magnitude is
large weigh more than that in other T-F units.

We illustrate how the value of the loss function changes
with the different estimate in Figure 2, using a weight α =
0.1. The lowest point (red spot in Figure 2) indicates the per-
fect estimate, where the value of the loss is 0. We can find a
ring-shaped area (red ring in Figure 2) that is lower than the
surrounding areas, where the magnitude of estimated vectors
is the same with the target. Therefore, when trained with this
loss function, a neural network is more likely to converge to
a point in this ring-shaped area where a better estimate of the
magnitude can be obtained.



Fig. 2: The value of loss function on a complex plain. The X
and Y represent real and imaginary parts, while the Z axis is
the value of the loss function. The red dot is the target, and the
red circle represents the estimates with the same magnitude
with the target.

3.2. cIRM estimation using proposed loss function

In this study, we train a convolutional recurrent neural net-
work (CRNN) to estimate cIRMs from reverberant speech
features.

The input features are complex spectrograms of reverber-
ant speech. The spectrograms are computed using a 512-point
short-time Fourier transform (STFT), which are then reshaped
into real-valued tensors with size of (2 × T × 257), where
T is the number of time frames. The targets are compressed
cIRMs, which are obtained by using the compression function
adopted in [9] to map the value of real and imaginary compo-
nents of masks into the range of [−K,K], after the masks are
computed using Equation (1).

The architecture of our model is shown in Table 1. The
hyperparameters of the convolution kernels in each layers are
given in kernelSize, strides, outChannels format. The input
size and the output size of each layer are specified in fea-
tureMaps × timeSteps × frequencyBins format. The number
of feature maps in each decoder layer is doubled by skip con-
nections, which are added between corresponding conv2d and
deconv2d layers. After each convolution layer and decon-
volution layer, PReLU activation and batchnorm are applied,
while tanh activation is adopted after the output layer (de-
conv2d 1). After the cIRMs are obtained, the estimated clean
speech is computed by multiplying the masks with the rever-
berant speech spectrograms followed by the inverse short time
Fourier transform (iSTFT).

Table 1: Architecture of our adopted CRNN

layer name input size hyperparameters output size
conv2d 1 2× T × 257 5× 5, (1, 2), 16 16× T × 129
conv2d 2 16× T × 129 5× 5, (2, 2), 32 32× T/2× 65
conv2d 3 32× T/2× 65 5× 5, (1, 2), 64 64× T/2× 33
conv2d 4 64× T/2× 33 5× 5, (2, 2), 128 128× T/4× 17
conv2d 5 128× T/4× 17 5× 5, (1, 2), 256 256× T/4× 9
reshape 256× T/4× 9 - T/4× 2304
blstm T/4× 2304 2304 2× T/4× 2304

conv2d 2× T/4× 2304 1× 1, (1, 1), 1 T/4× 2304
reshape T/4× 2304 - 256× T/4× 9

deconv2d 5 512× T/4× 9 5× 5, (1, 2), 128 128× T × 17
deconv2d 4 256× T/4× 17 5× 5, (2, 2), 64 64× T × 33
deconv2d 3 128× T/2× 33 5× 5, (1, 2), 32 32× T × 65
deconv2d 2 64× T/2× 65 5× 5, (2, 2), 16 16× T × 129
deconv2d 1 32× T × 129 5× 5, (1, 2), 2 2× T × 257

4. EXPERIMENT

4.1. Experiment setting

We use speech signals with a sample rate of 16kHz. When
performing the STFT, the speech signals are divided into
frames of 32 ms with an 8 ms frame shift (i.e. 75% overlap),
and a Hanning window is applied to the frames.

The DNN is trained with simulated room impulse re-
sponses (RIRs) generated using a RIR generator1 based on
the image method. We use a similar setting to [4] and [16] to
generate our RIRs. The simulated RIRs are generated for five
simulated rooms with size of 9m×8m×7m, 10m×7m×3m,
6m × 6m × 10m, 8m × 10m × 4m, and 7m × 7m × 8m.
A sound source and a microphone are randomly placed in
each simulated room with a fixed distance of 1m between the
source and the microphone. The reverberation time (T60) is
set to increase from 0.3s to 1.5s with a step of 0.1s. Twenty
different RIRs are generated for each T60 and for each room,
which results in 5 × 13 × 20 = 1300 RIRs in total. The
RIRs from first three rooms (780 RIRs) are used for training,
while the RIRs from the fourth room (260 RIRs) are used for
validation and those from the fifth room (260 RIRs) are used
for testing.

We use speech utterances from the ARU speech corpus
[17], which comprises single channel recordings of IEEE
(Harvard) sentences spoken by native British English speak-
ers. Following [3] and [9], we use 500 utterances from a
single speaker for training. In the training stage, each RIR
from the training set is combined with 50 random utterances
chosen from the 500 training utterances. A validation set is
formed by convolving 10 different utterances from the same
speaker with validation RIRs, and another 10 sentences by
the same speaker are convolved with testing RIRs to form
a test set. Before convolving RIRs with utterances, initial
delays in RIRs are removed to improve time alignment.

The model is trained using our proposed WMP loss func-
tion with different weights α, and compared with the MSE

1https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-
generator



(a) PESQ score (b) STOI score (c) frequency-weighted SNR

Fig. 3: PESQ score, STOI score and frequency-weighted SNR of unprocessed speech and speech processed by different methods
under different T60

loss function used by Williamson and Wang [9]. For compar-
ison, we also train models to estimate phase-sensitive masks
(PSMs) [18] and ideal ratio masks (IRMs) [19] using the MSE
loss. The phases of IRMs are modified using the Griffin-Lim
algorithm. The performance is evaluated using perceptual
evaluation of speech quality (PESQ) [20], short-time objec-
tive intelligibility (STOI) [21] and frequency-weighted seg-
mental signal-to-noise ratio (SNRfw) [22]. The source code
is available at Github.2.

4.2. Experiment results

The results of the experiments are shown in Figure 3. It can
be seen that our approach leads to improved speech qual-
ity except for the case when the reverberation time is small
(T60 ≤ 0.4s), where the quality of unprocessed speech is
already high. The performance of the models trained with
our proposed WMP loss function surpasses the model trained
using the MSE loss function in most cases. In terms of the
PESQ score, the model trained using the WMP loss function
with a weight of α = 1 gives the best results when reverber-
ation is not too high (T60 < 1s), while a smaller weight of
α = 0.1 gives a better result in high reverberation conditions
(T60 > 1s). A similar trend can be seen for the STOI score:
a weight of α = 1 leads to the best STOI score in low and
moderate reverberation conditions, while a smaller weight of
α = 0.1 performs better when the reverberation time is very
large (T60 > 1.2s). For frequency-weighted segmental SNR,
the weight of α = 1 achieves the best performance. We also
notice that the performance of WMP loss with a weight of
α = 0.1 is close to that of the IRM with the Griffin-Lim al-
gorithm. The reason might be that WMP with a small weight
focuses more on estimating the magnitude.

We also measure the average squared difference of mag-
nitude between unprocessed or estimated speech and clean
speech (∆magnitude) as well as the average difference of

2https://github.com/ZhangJingshu/WMP-loss-for-dereverb

Table 2: Average difference of magnitude and phase between
unprocess/estimated speech and clean speech

∆magnitude ∆phase/rad
unprocessed 0.0509 2.083

MSE 0.0349 1.232
WMP, α=2 0.0280 1.235
WMP, α=1 0.0258 1.215

WMP, α=0.1 0.0260 1.263
IRM w/ Griffin 0.0270 2.081

PSM 0.0411 1.589

phase (∆phase) measured in radians. The results are shown
in Table 2. Our proposed loss function leads to estimates with
smaller magnitude difference compared to MSE, PSM and
IRM. The weight of α = 1 gives the best estimates of mag-
nitude and phase, corresponding to the best results in speech
quality as shown in Figure 3.

5. CONCLUSION

In this paper, we propose a weighted magnitude-phase loss
function where magnitude and phase are measured separately.
A weight parameter α is introduced to adjust the proportion of
magnitude and phase in loss function. Experiments are con-
ducted to test its performance in speech dereverberation. The
result shows that our loss function outperforms the conven-
tional MSE loss function, as well as PSM and IRM.
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