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ABSTRACT

Deep learning-based algorithms provide an efficient and re-
liable diagnosis for medical imaging. This paper proposes
COVID-19 diagnosis based on analysis of Computerised
tomography (CT) chest scans. In recent years, deep learning-
based analysis of CT chest scans has demonstrated com-
petitive sensitivity for pneumonia prognosis. This paper
presents our submission for the 2021 ICASSP Signal Pro-
cessing Grand Challenge (SPGC). We exploit a 3D Network-
based transfer learning approach to classify volumetric CT
scans with a novel pre-processing method to render the vol-
ume with salient features. This work uses the pre-trained
3D ResNet50 as the backbone network. The 3D network
is trained on a dataset consisting of 3 classes: Community
Acquired Pneumonia (CAP), COVID-19 and Normal patient.
The final testing results have shown an overall accuracy of
85.56% with the COVID-19 sensitivity attaining 82.86%.

Index Terms— COVID-19, CT scans, Deep Learning,
3D CNN, Transfer Learning, Fully-Automated Classification

1. INTRODUCTION

The pandemic of COVID-19 has caused 122.7 million in-
fections worldwide [1] to date. Considering the continuous
impacts of the pandemic and the fact that this virus is ex-
tremely transmissible, a timely, fast and sensitive prognosis
technique is of crucial importance, to help government au-
thorities with the efficient allocation of medical resource and
halting the transmission of the virus. The current gold stan-
dard diagnostic technique of COVID-19 is Reverse Transcrip-
tion Polymerase Chain Reaction (RT-PCR). However, many
recent studies claimed that RT-PCR is time-consuming and
prone to a high false-negative rate [2] [3]. Additionally, pro-
cessing a RT-PCR test is manual labour work and it is likely to
cause a heavy workload to healthcare professionals. Hence,
a fast and fully automated technique is needed as a comple-
mentary diagnostic approach to mitigate the pressure on the
medical systems.

Recently, many studies have investigated the utilisation
of deep learning-based Computed Tomography (CT) chest
scans for COVID-19 detection and diagnosis. The method
in [4] uses a decision fusion approach by combining predic-
tions from 5 CNN architectures and yielded an overall accu-
racy of 86%. The study in [5] proposes a fully-automated
framework named ”COVID-FACT” that is capable of captur-
ing spatial information of the CT images by using U-Net-
based lung segmentation, achieving an accuracy of 90.82%
for binary classification and achieving improved COVID-19
sensitivity. The work in [6] proposes a hybrid network ar-
chitecture to achieve a trade-off between computational costs
and spatial information and uses depth-wise convolution and
spatial pyramid pooling layers to extract the spatial features.
The method in [7] uses the pre-trained 3D ResNet-18 [8] as
the backbone network and stacked the 2D CT images for the
3D input of the network and achieves an excellent overall ac-
curacy.

Although the previous studies demonstrated a satisfac-
tory accuracy in 2D-based or hybrid COVID-19 detection,
few of them investigated using the whole lung volume as the
3D network input. This may be due to the bulkiness of the
3D volume. Inspired by the gap of most previous work, we
employ a 3D Convolution Neural Network (CNN) transfer
learning approach for COVID-19 screening using chest volu-
metric CT scans by adapting the 3D ResNet [9]. This paper
presents our solution for the 2021 IEEE ICASSP Signal Pro-
cessing Grand Challenge (SPGC). Noticeably, our algorithm
does not require volumetric information by utilising a novel
pre-processing method. Its input data is just patient-wise 3D
volume.

2. METHODOLOGY

2.1. Dataset Description

As required by the 2021 IEEE ICASSP SPGC, the SPGC-
COVID dataset, referred as ”COVID-CT-MD” [10] is used
for this study. The whole dataset comprises 3 classes of volu-
metric chest CT scans, which includes 171 patients diagnosed
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Fig. 1: Slice Distribution in Labelled Dataset

with COVID-19, 60 patients diagnosed with Community Ac-
quired Pneumonia (CAP), and 76 normal patients. Patients
with COVID-19 were collected from February 2020 to April
2020; whilst CAP and Normal cases were acquired from
April 2018 to December 2019. For each patient, the dataset
contains all slices of a volumetric chest CT scan in the Digital
Imaging and Communications in Medicine (DICOM) for-
mat. The pixel information of the CT slices is provided in
the Hounsfield Unit (HU) and the size of each slice image is
512 × 512. Note that the CT scans are obtained by multiple
medical institutions, thus the scanning parameters may vary
in slice thickness, pixel spacings, effective mAs and exposure
time.

Besides the patient-level labels, slice-level labels are also
provided with a subset of 55 COVID-19 and 25 CAP cases.
Slice labels were identified by one radiologist to exhibit slices
with infection and slices without infection. Fig.1 illustrates
the distribution of infected slices for labelled cases. The x
and y-axis respectively represent the index of slice and the
proportion of infected slices on that specific index of the slice.
This figure indicates the particular segment of the chest vol-
ume tends to have salient features, thus it is good to exploit
these features and improve the training efficiency and model
performance.

2.2. Data Preprocessing

2.2.1. Pixel Data Extraction

The pixel data of the chest volume per patient can be extracted
by using the built-in DICOM read function in MATLAB, the
pixel data of each chest volume are then converted to 3D gray-
scale (pixel ∈ [0 1]) volumetric images. Note that the dimen-
sions of each volumetric lung is 512×512×1×N (N denotes
the total number of slices).

2.2.2. 3D Image Resampling

The second step is to resample the volume by adjusting the
pixel spacings and slice thickness. The resampling step aims

(a) Original Image (b) Increase the contrast (c) Binarised Image

(d) Invert mask (e) Clear borders (f) Fill holes

(g) The masked original image

Fig. 2: Pulmonary Segmentation Process

to create more slices per patient and better visualise the chest
volume. In this dataset, the slice thickness is constantly
2mm; the pixel spacing value can be obtained from the tex-
tual information of the DICOM file. The adjustment includes
pixel spacing× 2.3 and slice thickness× 0.5. The filter of
the 3D interpolation is ’cubic’. After the resampling process,
the dimensions of the chest volume is 224 × 224 × 2N (N
is doubled since the slice thickness is half; The number of
dimensions is squeezed to 3).

2.2.3. Pulmonary Segmentation

Lung segmentation is an essential step for any CT scan-based
pulmonary detection. In this study, automatic pulmonary seg-
mentation is executed with successive procedures. Note that
this segmentation is 2D-based and the purpose is to extract
only the thorax region for each CT slice. Fig.2 illustrate the
explicit process of the segmentation. Firstly, the contrast of
the image is increased via saturating the bottom 1% and the
top 1% of pixel values. Next, an experimentally selected
threshold (> 0.502) is operated and then the image is bina-
rised. The following operations of inverting, borders clearing
and holes filling are executed sequentially, a clear mask of
the lung region is generated as shown in Fig.2 (f). The fi-
nal step is to multiply the lung region mask with the original
image. Thus, the image of the Region of Interest (ROI) is
extracted for the training input. Fig.2 (g) demonstrates the
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Fig. 3: Volume Range Selection Mechanism

output segmented lung image. After pulmonary segmenta-
tion, the 3D volume is constructed with the segmented lung
images of each patient. Note that the segmentation does not
change the dimensions of the volumes so the dimensions re-
main the same to the last step (224× 224× 2N ).

2.2.4. Volume Range Selection

As stated, the input data type for this study is 3D patient-
wise volume. Therefore, a slice range selection is operated
before constructing the 3D volume with the segmented lung
images. The aim of this step is to extract the slices with salient
features for pathological identification so that the training al-
gorithm can be more efficient without compromising much
volumetric information. As previously shown in Fig.1, the
slices with salient features are mainly located in the mid-
dle of the lung. Hence, by calculating the area of the lung
regions using segmentation masks, the range of slices with
salient features can be acquired. Fig.3 presents the slice se-
lection mechanism. Firstly, the percentages of lung area of
all slices in one volume are calculated and it returns a column
of percentages. Next, the column of values is normalised and
only the ”> 0.7” slices are extracted for volume construction.
It is noticeable that the normalisation method is by dividing
the maximum value of the column so that even the areas of
different patients vary, the range of salient slices can be ex-
tracted consistently. Finally, the volume with salient features
is generated and resized into [224 × 224 × 224] using 3D
cubic interpolation to meet the required input size of the 3D
ResNet. It is worth mentioning the chest volumes are saved in
”.mat” format in 3 different folder based on its class, thus the
3D image can be read by MATLAB for deep learning input.
Fig.4 demonstrates several examples of patient-wise volumes
for input data(visualised by MATLAB Volume Viewer).

2.2.5. Data Augmentation

As the original dataset is an imbalanced dataset, classes of
CAP cases and normal patients have insufficient samples

Fig. 4: 3D Volumes with Salient Features
Table 1: Dataset for Training (After Data Augmentation)

Dataset CAP COVID-19 Normal Total
Training 82 116 65 263
Validation 19 55 24 98
Total 99 171 89 361

compared to the class of COVID-19 cases. Hence, we aug-
mented the samples in the class of CAP and Normal patient
respectively. The augmentation methods include two aspects:
(1) Using different parameters for volume resampling, the
pixel spacing is multiplied by 1.75 and the slice thickness is
multiplied by 0.7; (2) Random image centre crop for slices in
one volume, the crop window size is in a range of [0.75 0.9]
of the original image size. The image crop is 2D and slice-
wise so it is independent of the slice selection step. Note
that only the class of CAP and the class of Normal patient
are augmented, Table.1 exhibits the details of the dataset for
training the deep learning model after data augmentation.

2.3. 3D ResNet50 for Transfer Learning

The pre-trained 3D ResNet50 [9] is used as the backbone
CNN for this challenge. The utilisation of 3D CNN is due to
its capability of extracting more robust volumetric represen-
tations, while less annotated data is needed, in comparison
to 2D and 2.5D networks [11] [12]. The architecture of 3D
ResNet50 is generally similar to the 2D ResNet50, the main
difference is that 3D modules are used in each essential sec-
tion such as 3D convolution layers and 3D maxpooling layers.
These 3D modules allow the network to learn the spatial in-
formation of the voxel.

In this study, we use the convolution base of the 3D
ResNet to for feature extraction. The original fully connected
layers are trimmed off and replaced by new ones, the output
of the last fully connected layer is set to 3 in corresponding
to this challenge. A Dropout layer [13] is added to mitigate
the overfitting problem. Table.2 illustrates the details of the
classifier.

2.4. Training Implementation

Table.3 presents the options for the training process. In this
work, the categorical cross-entropy loss function is utilised.
Moreover, we choose Adam optimiser for faster convergence.
The initial learning rate is set to 2e − 4 and multiplied with
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Fig. 5: Confusion Charts of 4-fold Cross Validation

Table 2: Classification Layer for Transfer Learning
Layer Activations

GlobalAverage Pooling 1× 1× 1× 512

FullyConnected-1 1× 1× 1× 512

ClippedRelu -
Dropout 0.5

Fully-Connected-2 1× 1× 1× 3

Softmax-Prob 1× 1× 1× 3

Classification Output Label

Table 3: Training Options
Training options Parameters
Loss Function CrossEntropy Loss
Optimiser Adam
Initial learning rate 2e− 4
Lr descendant factor 0.5
Lr descendant rate per 40 epochs
Total epochs 120

a factor of 0.5 per 40 epochs. The number of total epochs
is 120. Since the testing set does not provide the categorical
labels as it is a grand challenge, we employ a 4-fold cross val-
idation approach to test the model performance. Meanwhile,
for each one experiment, we split 25% of the training and val-
idation set is randomly to test the trained model and generate
a confusion chart illustrating the testing accuracy. Note that
the model for the final submission is trained with the whole
dataset. The implementation of the training is achieved by
using MATLAB on a RTX 2070 GPU with 8GB of memory.

3. PERFORMANCE EVALUATION

In this work, we employ a straightforward training approach
that the classification is based on patient-wise prediction.
This section reports our initial evaluation of the proposed
method. Since the labels of the test data set are not available,
we report the 4-fold cross validation using the training test
set. The accuracy rate, specificity and the sensitivity for each
of the classes are reported in Table.4. Fig.5 illustrates the
confusion tables of the 4-fold cross validation experiments.
Results show an overall Accuracy of 86.94%, sensitivity of
87.79% and specificity of 89.88% for the COVID-19 class.

Table 4: Classification performance for 4-fold CrossValidation
Model Accuracy Sensitivity Specificity
EXP 1 86.67% 81.39% 97.22%
EXP 2 91.11% 93.02% 93.02%
EXP 3 86.67% 83.72% 97.30%
EXP 4 83.33% 93.02% 76.92%

Summary 86.94% 87.79% 89.88%

It is possible that the model performance is mainly con-
strained by the limited and imbalanced dataset. Moreover,
the slice-level labels are not involved in this deep learning
algorithm as this approach has minimal requirements for an-
notated data. Furthermore, this study does not use a deep
learning-based lung segmentation may also slightly affect the
model performance. It is likely that the model performance
can be improved with more samples available. Also, this ap-
proach does not modify the architecture of the 3D ResNet50
due to the complexity. The final testing results demonstrate
that this model has achieved an overall 85.56% accuracy. The
sensitivity for COVID-19, CAP and NP is 82.86%, 80.00%
and 91.43% respectively.

4. CONCLUSIONS

In this paper, we have presented a novel data preprocessing
approach and a 3D Network-based transfer learning algorithm
to fully automatically detect and classify the chest volumetric
CT scans, submitted as a solution for the 2021 ICASSP Sig-
nal Processing Grand Challenge. The model was trained with
a limited dataset and a fairly good result has been achieved.
An overall classification accuracy of 85.56% was achieved.
The sensitivity for COVID-19, CAP and NP was 82.86%,
80.00% and 91.43% respectively. As there has not yet been
many studies that investigate 3D networks for patient-wise
COVID-19 prognosis, our solution has provided a promising
approach. Moreover, the heavy computational costs for this
algorithm can be mitigated via continuously optimising the
algorithm in future works.
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