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ABSTRACT

We propose an end-to-end learning approach to address dein-
terleaving of patterns in time series, in particular, radar sig-
nals. We link signal clustering problem to min-cost flow as an
equivalent problem once the proper costs exist. We formulate
a bi-level optimization problem involving min-cost flow as
a sub-problem to learn such costs from the supervised train-
ing data. We then approximate the lower level optimization
problem by self-attention based neural networks and provide
a trainable framework that clusters the patterns in the input
as the distinct flows. We evaluate our method with extensive
experiments on a large dataset with several challenging sce-
narios to show the efficiency.

Index Terms— Deinterleaving, attention, min-cost flow

1. INTRODUCTION

Practical Electronic Warfare (EW) systems are often operated
in environments where multiple signal sources exist simulta-
neously. Signal patterns from different emitters are received
via the same channel of the receiver in time order, hence ob-
taining an interleaved signal sequence. For robust classifica-
tion of radar signals, obtaining the individual sequences from
emitters (i.e., deinterleaving, emitter separation or signal sort-
ing) is essential [|1}2].

The first degree attributes of radar pulse streams are time
of arrival (ToA), direction of arrival (DoA), pulse amplitude
(PA), pulse width (PW) and radio frequency (RF), which are
stored in pulse description words (PDWs) [1,/2]. DoA, PA,
PW and RF may be missing or follow unpredictable irregular
patterns [3}/4] though clustering the pulses with respect those
attributes seem to be appealing. On the other hand, radar sig-
nals usually have characteristic pulse repetition interval (PRI)
which is the first difference of the ToA sequence. Following
the existing efforts [3-6]], we exploit only ToA measures to
deinterleave radar signals .

Prior conventional methods construct histograms from
ToA differences to capture the periodicity of the pulses [3,/4].
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Fig. 1: Overview of the Soft Min-cost Flow Framework

While the cumulative difference histogram (CDIF) [3] ac-
cumulates histogram values for each difference level of the
ToA sequence in a single iteration, the sequential difference
histogram (SDIF) [4] computes the histogram values simul-
taneously for each difference order. Following that, they es-
timate PRI values of radar signals from calculated histogram
by using heuristic threshold functions and sequentially search
and cluster pulses, which follows estimated PRI regimes to
form radar signals. Since those approaches are sensitive for
sub-harmonics, PRI transform (PRIT) [5]] proposes to use a
complex-valued autocorrelation-like integral instead of calcu-
lating histograms with the assumption that the ToA sequence
is quite large. Although those conventional algorithms work
well for simple PRI modulation types, they fail to succeed in
scenarios where largely missing pulses, highly jittered PRI
values and staggered PRI modulation modes exist.

Recently, heuristic approaches [7H10|] are proposed to
deinterleave radar signals which have complex PRI modu-
lation types. However, their limitation to specific scenarios
prevents generalizing to problems of different nature. Fur-
thermore, machine learning techniques have been applied
to solve the deinterleaving task. For instance, fuzzy adap-



tive resonance theory (ART) is utilized in [11] to cluster
pulse streams by exploiting RF, PW and DoA features before
using one of the histogram based deinterleaving methods.
Moreover, [12] utilizes recurrent neural networks (RNNs)
to capture the current context of the pulse stream and pre-
dict attributes of the next PDWs. Yet, RNNs classify PDWs
from predefined radar list, hence, it identifies pulses rather
than solving the deinterleaving problem. Finally, denoising
pulse streams with autoencoders [[13]] is visited to improve
the deinterleaving solution.

We address alleviating the limitations of the aforemen-
tioned approaches through a novel end-to-end trainable clus-
tering framework. Starting from linking deinterleaving to
min-cost flow problem, we develop a bi-level optimization
problem and relate the solver of the lower problem to the
residual networks, yielding a novel unified self-attention
based framework enabling to learn clustering arbitrary num-
ber of patterns in signals.

2. METHOD

2.1. Min-cost Flow Formulation of Signal Clustering

We consider deinterleaving of PRI patterns using relative time
of arrival (RToA) measures though our formulation is general
for deinterleaving in time series. RToA is computed from ToA
differences: RToA;=ToA;—ToA;_; for i>1 with RToA;=0.
We have N RToAs, z={x;};€R", of mixed signals. Our
aim is to divide = into K disjoint sets, x(F)={x}, };€RN,
containing the RToAs of the distinct sources. We encode
such sets by the ground truth assignment matrix, y={v;; }i; €
{0, 1}V*N where y;;=1 tells x; is preceding z; in a distinct
pattern, i.e., 7;=x, and z;=y,,, asz®W={ . z;,2;...}.
We formulate deinterleaving problem as a min-cost flow
problem on a directed graph. The vertices of the graph are
RToAs which we denote as z={z;}; € R and the edges
are the possible connections among RToAs. We augment the
graph with a start and a terminal vertex, x U {x, 2 }, to help
formulation. We associate edges with costs, ¢ = {¢;;}i; €
RWHDx(N+1) " and mean to find min-cost flows from some
starting vertices to the terminal vertices. Such flows will be
the deinterleaved signals. Formally, we consider the problem:
> i Cij Di (P1)

p* = argmin

>, piy=L1Vi\{s}
22 pij=1Y5\{t}
Zj Psj :Zi Pit

0<pi;<1,Vij

to find an assignment matrix, p, from which we can recover
the flows. The constraints avoid one-to-many or many-to-one
connections (1&2) and preserve flow continuity (3). Total
unimodularity of the constraints ensures integer solutions for
pi; [14]], meaning that we have a binary assignment matrix,
p, which encodes the linking of the flows. We note that the
number of sources, K, can be arbitrary; since, no explicit de-

pendency on K exists in the formulation.

2.2. Learning Association Costs and Soft Min-cost Flow

The optimality of the computed flows are based on the edge
costs, ¢;;. Ideally, given y as the ground truth assignments,
c=1—y would yield the flows as the desired deinterleaved sig-
nals. In practice, we have no information of y.

We are to learn association costs from some training data,
x, with known assignments, y. To formulate our learning
framework, we express the cost matrix as a parametric func-
tion of = with parameters 6 to be learned as c(6) where we
drop the dependency on x for simplicity. Then the problem
becomes a bi-level optimization problem:

0* = argmin —+ i Yijlog pi;
subject to p* = argmin ¢(0)Tp (P2)
0<piy <13

where A and b are the flow constraints in (PT)). The Jacobian
of the linear program (LP) 85’: must be computed to perform
gradient updates for . This can be achieved by transform-
ing LP into an unconstraint problem with unique solution and
using implicit differentiation [15]]. Equality constraints can
be eliminated by expressing p=po+Bz where pg is any so-
lution to A po=>b and B is the basis for the null space of the
constraints A. The inequality constraints can be relaxed by
introducing strictly convex penalty terms as in [16]. Hence,
the relaxed unconstrained problem, z*= arg min £(z), has a
unique solution to be obtained by gradient updates over z as:

LD — () vy, L(2) | =0 2.1

where [ is the iteration number. For a solution obtained at
the L'" iteration, z(X), computing the partial derivatives for
9p

* . . . Do
€L can be seen as applying chain rule recursively on z(s:

(1) ) . .

030 HlL:1 %, where we deliberately omit dependency
on c for simplicity. To this end, with the abuse of the gradient
expression, we consider each update as a non-linear transform

of z() added to itself:
L) L0 1 (0

2.2)

which is similar to residual connections in deep learning [|17,
18]]. The expression in Eqn. (2.2) informally suggests approx-
imating a solver by stacked residual layers. We use this re-
semblance to build our formulation which couples cost learn-
ing and LP solving within a single framework. Specifically,
we consider assignment matrix as a parametric function of x
directly, p(z; ), rather than the solution of an LP and formu-
late the learning problem as:

0 = argemin -+ >4 Yig log p(6) (P3)

subject to Zj p(0)i; < 1,Vi (C3.1)
> p(0)i; < 1,V5\{t} (C3.2)
2ip(0)i =32;,(1=32;p(0)i;)  (C3.3)
p(6); € {0,1},ij (C3.4)



where p(x;0) is realized by a stack of bidirectional trans-
former encoder [18]] layers. We omit start node, s, and related
constraints from the formulation and embed flow continuity in
(C33). We explicitly introduce flow constraints to the learn-
ing problem in terms of p. Thus, the constraints are no longer
linear nor convex. However, such a formulation allows us to
use supervision to learn solving min-cost flow problem with
proper costs inherently. Hence, no explicit LP solver to com-
pute assignment matrix is required in practice.

We solve (P3) by relaxing the constraints with proper
penalty terms to obtain an unconstrained problem. As we
will show in Sec. [2.3] (C3.1) is already satisfied by design.
We use hinge loss for (C3.2),

Lo(0) = % Ej max (0, . p(#);; — 1) (2.3)
and squared L2 norm penalty for (C3.3),
L3(0) = | 2 p(0)—2;(L =3 p(0)i)ll5- 24

For the binary constraint (C3.4), we exploit the fact ||p;||1 >
|lpi||2 always and equality holds when p; is a one-hot vector.

L4(0) = 5 Zi(Ipillh = llpil2)

where p; is the i*" row of p(6). Hence, total loss becomes:

L 10w (0)

2.5)

= % Zij Yij log p(0);

2.6)
+ X2 L2(0) + A3 L3(0) + My L4(6)

where \;s are the penalty coefficient hyperparameters. Once
the parameters, 6 are learned by 6*=argmin £ f;,,,(9), dis-
tinct patterns in a sequence, x, can be clustered using com-
puted flows.

2.3. Soft Min-cost Flow Architecture: p(x;0)

We exploit stack of bidirectional transformer encoder (BTE)
[18] layers to model p(x;#) owing to the success of the ar-
chitectures [18,/19]] equipped with such layers in encoding the
high order relations among sequential data. A BTE layer is
a stack of a self-attention and a feed-forward layer each of
which contains a non-linear function and a residual connec-
tion. Thus, such layers meet our intuition for expressing a
solver in terms of stacked residual units as in Eqn. (2.2).

Self-attention layers expresses the representation of each
sample in the sequence as the convex combination of the rep-
resentation of the all samples. The mixing weights are accord-
ing to the relative similarities of the representations. Thus,
stack of such layers hierarchically encodes higher order rela-
tions among the samples of the sequential data.

In our architecture which is depicted in Fig. [I] we
first represent each sample, z;, in the sequence with a
D-dimensional vector. We normalize the input sequence,
i:ﬁ{h}l and then assign each sample, x;, to some to-
ken with embedding € R” according to quantization of the

interval, [0, 1]. One can also use a neural network to embed
x;s to RP; however, we empirically found that the former
works well in practice and simpler. We then perform relative
position encoding as in [20] to emphasize ordering in time.
These encoded representations are then fed to the stack of L
BTE layers to yield transformed representations, {r; };, which
are enhanced with the higher order relations. We apply affine
transformation followed by soft-max to these representations:
q; = T r;+ [ where we consider columns of 7" as the decision
representatives which tell to which the corresponding sample
is to be linked . Thus, g;; is a proxy of the similarity between
r; and the j*" decision representative. Large g;; means i is
probably linked to j. Finally, soft-max of ¢ reads the as-
signment matrix and note that the constraint in is
readily satisfied with this formulation: p;; = ¢;;/ > ; dij-

Though using fixed decision representatives brings the
limitation of processing fixed-length sequence, this limita-
tion can be alleviated during inference by processing the
sequences in overlapping windows. We empirically found
that interaction of the samples too far from each other can
be neglected. Thus, fixed-length training of appropriate size
achieves good generalization performance.

2.4. Inference

In general, we have soft assignments in our estimated assign-
ment matrix, p. We compute a binary assignment matrix from
p by solving with 1—p as the cost matrix. We also exper-
imented greedily performing assignments starting from the
highest p;;. We provide the comparisons in Sec. [3.3]

For the sequences whose lengths exceed the model capac-
ity, we take overlapping segments of the sequence and per-
form assignments. We take the most recent assignment for a
sample in case of multiple assignments due to overlapping.

3. EXPERIMENTAL WORK

3.1. Datasets

We use simulator to generate ToA sequences for train-
ing and validation data. PRI types of the radars (Fig.
are constant, jitter, constant stagger, random stagger and
switch&dwell [21]. To produce realistic data, we select the
maximum standard deviation of constant, jitter, constant stag-
ger, random stagger and switch&dwell for ToA are +/-1%,
+/-15%, +/-40%, +/-40% and +/-40%, respectively. Since
normalization occurs in PRI as pre-processing of the algo-
rithm, we choose PRI values from pre-defined range which is
between 1 and 1000 ps. Stagger level can vary from 2 to 9.
We sample switch&dwell repetition parameter (the number
of dwells) between 4 and 10 where the range of the number
of switches is kept as same as the stagger level range. The
least and the most number of sample belong to same radar is
5 and 100, respectively. We set the maximum number and
minimum of radars in a sequence is 10 and 1, respectively.



Table 1: Comparison with the existing and baseline methods for the deinterleaving task. The best results are indicated in bold.

Dataset - Acciini | AcCnor I Viom ‘ CDIF SDIF ‘ PRIT Baseline + Greedy ‘ Baseline + LP ‘ SMCF + Greedy ‘ SMCF + LP ‘
Validation - Case | 0.84170.60570.000 | 0.85070.61470.000 | 0.98270.63170.000 | 0.975/0.94070.013 | 0.963/0.96670.000 | 0.991/0.998/0.001 | 0.991/0.998/0.000
Validation - Case 2 0.519/0.312/0.000 | 0.518/0.309/0.000 | 0.631/0.538/0.000 | 0.894/0.758/0.201 | 0.885/0.764/0.000 | 0.945/0.996/0.004 | 0.943/0.994 /0.000
Validation - Case 3 0.352/0.154/0.000 | 0.362/0.157/0.000 | 0.579/0.437/0.000 | 0.858/0.623/7.477 | 0.856/0.627/0.000 | 0.912/0.950/0.025 | 0.915/0.954/0.000
Validation - Case 4 0.679/0.480/0.000 | 0.683/0.481/0.000 | 0.768/0.545/0.000 | 0.956/0.977/0.011 | 0.955/0.977/0.000 | 0.991/0.999/0.002 | 0.990/0.998 / 0.000
Validation - Case 5 0.548/0.370/0.000 | 0.550/0.364/0.000 | 0.642/0.496/0.000 | 0.901/0.836/2.736 | 0.900/0.841/0.000 | 0.929/0.975/0.015 | 0.929/0.975/0.000

Test 0.304/0.147/0.000 | 0.311/0.148/0.000 | 0.564/0.436/0.000 | 0.842/0.539/11.943 | 0.823/0.555/0.000 | 0.903/0.883/0.098 | 0.898 /0.886 /0.000
I 5 e average probability of the true estimated next PDW position
600 600 600 e . .

o I R oo (Accying), the average probability of the true estimated num-
a0 wl S w0 I S ber of radars (Accy,,,-) and the average number of one to many
e T S N 1 = ) SR ] assignments (V;_,,) which violates (C3.2). The desired val-

ToA ToA ToA ToA ToA

Fig. 2: PRI types. (a) 500 us constant PRI. (b) 500 us jit-
ter PRI with +/-10% jitter. (c) [500, 400, 600] us constant
stagger PRI with 3 stagger levels. (d) [400, 500, 600] ps ran-
dom stagger PRI with 3 stagger levels. (e) [600, 400, 500] us
switch&dwell PRI with [5, 7, 3] dwells and 3 switches.

We generate 200000 interleaved radar sequences for train-
ing and 5000 for validation data. Sequences in each dataset
for the following cases are sampled with equal probability:
Case 1: Only constant and jitter PRI type. Case 2: No
missing occurs. While ending times of radar sequences are
same, beginning times of radar sequences are close. Case
3: Missing occurs with maximum probability, 0.20. Con-
secutive missing is favored up to 10 pulses. While ending
times of radar sequences are same, beginning times of radar
sequences are close. Case 4: No missing occurs. While end-
ing times of radar sequences are different, beginning times of
radar sequences might be far. Case 5: Missing occurs with
maximum probability, 0.20. Ending and beginning times of
radar sequences might be close or far.

In test dataset, we use 15 deinterleaved signals provided
by ASELSAN A.S. We interleaved random batches of dis-
tinct signals while the number of the interleaved signals varies
between 2 and 15. The test dataset contains 1000 interleaved
sequences and is of different modality and disjoint from train-
ing and validation.

3.2. Experimental Setup and Evaluation Metrics

We use Tensorflow [22] deep learning library throughout the
experiments. We set penalty coefficient hyperparameters,
A2=10, A3=1 and \4=5, after fine-tuning the network. Fur-
thermore, we select the maximum of sequence length, the
dimension of representation and the number of quantization
level as 256, 512 and 5001, respectively. For the optimiza-
tion procedure, we choose the base learning rate as 10~* and
utilize ADAM [23]] optimizer for mini-batch gradient descent
with a mini-batch size is 128 and default moment parameters.
The remained BTE parameters are kept same with [19].

We use three performance metrics for better analysis: the

ues of those metrics are Accy;nr=1, Accpor=1and V;_,,=0.
Each predicted cluster which has larger than 3 is assigned as
a radar signal.

3.3. Quantitative Results

We examine the effectiveness of the proposed soft min-cost
flow (SMCF) framework through evaluation on the valida-
tion dataset and disjoint test data. We compare SMCF with
CDIF [3]], SDIF [4] and PRIT [5], which are conventional
non-learning based deinterleaving methods, to show their lim-
itations in realistic scenarios. Additionally, we show the sig-
nificance of relaxed constraints in Eqn. by training with-
out corresponding penalty terms, i.e., A;=0, which we de-
note Baseline. We also compare the two inference methods
(Greedy, LP) proposed in Sec. 2.4}

Table [T] shows the quantitative results for the deinter-
leaving tasks. SMCF algorithm consistently outperforms
the associated baseline methods by up to 6.1% and 32.8%
points on Accyini and Accy,, metrics, respectively. Con-
ventional methods perform poorly in challenging scenarios
where largely missing pulses and complex PRI modulation
types exist. Additionally, the obtained clusters are missing
related PDWs although PRI values are predicted correctly.

Comparison of one-to-many violations of Baseline Greedy
with of SMCF Greedy as well as the overall performance vari-
ation between SMCF Greedy and LP is a good indicator to
show the proposed penalty terms improve the solution by
enforcing constraints. Similar performances of Greedy&LP
in SMCF and superior performance of Greedy SMCF to
Baseline imply constraints are better satisfied in the output of
SMCEF. We note that all the methods except for Greedy have
zero one-to-many violations owing to hard assignment.

4. CONCLUSION

We link deinterleaving to min-cost flow problem and formu-
late training of a self-attention based neural network to solve
min-cost flow problem. The mechanism behind the formula-
tion is supported by extensive evaluations on the large dataset.
Experimental results on data of different modalities show that
our framework is able to learn deinterleaving the signals.
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