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ABSTRACT

We consider decentralized model training in tiered communication
networks. Our network model consists of a set of silos, each hold-
ing a vertical partition of the data. Each silo contains a hub and a
set of clients, with the silo’s vertical data shard partitioned horizon-
tally across its clients. We propose Tiered Decentralized Coordinate
Descent (TDCD), a communication-efficient decentralized training
algorithm for such two-tiered networks. To reduce communication
overhead, the clients in each silo perform multiple local gradient
steps before sharing updates with their hub. Each hub adjusts its co-
ordinates by averaging its workers’ updates, and then hubs exchange
intermediate updates with one another. We present a theoretical anal-
ysis of our algorithm and show the dependence of the convergence
rate on the number of vertical partitions, the number of local updates,
and the number of clients in each hub. We further validate our ap-
proach empirically via simulation-based experiments using a variety
of datasets and both convex and non-convex objectives.

Index Terms— vertical machine learning, coordinate descent,
federated learning, stochastic gradient descent

1. INTRODUCTION

In recent times, we have seen an exponential increase of data pro-
duced at the edge of the communication networks. In many settings,
it is infeasible to transfer the entire dataset to a centralized cloud for
downstream analysis, either due to practical constraints such as high
communication cost or latency, or to maintain user privacy and secu-
rity [1]. This has led to the deployment of distributed machine learn-
ing and deep-learning techniques where computation is performed
collaboratively by set of clients, each close to its own data source.

Once scenario that arises in distributed training is when clients
have different sets of features, but there is a sizable overlap in the
sample ID space among their datasets [2]. For example, the training
dataset may be distributed across silos in a multi-organizational con-
text, for example in healthcare, banking, finance, retail, etc. [2, 3].
Each silo holds a distinct set of features (e.g., customer/patient list);
the data within each silo may even be of a different modality, for ex-
ample, one silo may have audio features, whereas another silo has
image data. The paradigm of training a global model over such
feature-partitioned data is called vertical federated learning [4, 5].
This is different from the more prevalent alternative of horizontal
learning, where the participating clients each have the entire set of
features for a subset of the sample space [6, 7, 1].

Earlier vertical learning works [8, 4, 9, 10] considered a case
where each party needs to communicate in each iteration, which
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may be expensive communication-wise. To save communication,
multiple rounds of training can be performed on a client before
reconciling the local model updates into the global model. A more
recent work [5] proposed an algorithm that addresses this problem
by performing multiple local training iterations before reconcil-
ing the client model updates into the global model. All of these
works assume that the entire dataset of a silo is contained in a
single client. However, this model fails to capture the case where
the dataset within a silo is horizontally partitioned across multiple
clients, for example, the dataset of a bank may be distributed among
its branches, or healthcare data among hospitals in a chain.

We propose a training algorithm, tiered decentralized coordinate
descent (TDCD), for vertical federated learning where there are mul-
tiple clients in each silo. We consider a two tiered network architec-
ture consisting of multiple silos. Each silo holds a vertical partition-
ing of the data, and internally consists of a hub and multiple clients
connected to the hub. The data in a silo is further horizontally dis-
tributed among its clients. Our goal, is to jointly train a model on the
features of the data contained across silos, without explicitly sharing
raw data from clients, and only via passing intermediate informa-
tion vectors. TDCD works by performing a non-trivial combination
of parallel coordinate descent on the top tier between silos, and dis-
tributed stochastic gradient descent in the bottom tier of clients in-
side each silo. To reduce communication, each client performs mul-
tiple local gradient steps before sending updates to its hub. This opti-
mization is similar to the method studied in [6, 11, 12] for horizontal
learning. We note that some existing works have proposed training
algorithms for hierarchical network architectures [13, 14, 15, 16],
but only from the perspective of horizontal learning. Our approach
is thus a novel combination of learning with both vertically and hor-
izontally partitioned data in a multi-tiered network.

Specifically, our contributions are the following: (1) we present
a system model for decentralized learning in a two-tier network,
where data is both vertically and horizontally partitioned; (2) we de-
velop a communication-efficient decentralized learning algorithm,
using principles from coordinated descent and stochastic gradient
descent; (3) we analyze the convergence of our proposed algorithm
and show how it depends on the number of silos, the number of
clients, and the number of local training rounds; (4) we validate our
analysis via experiments using convex and non-convex objectives.

2. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system architecture, the allocation of
the training data, and the loss function we seek to minimize.

2.1. System Architecture and Training Data

We consider a decentralized system consisting of N silos, shown
Fig. 1. Each silo consists of a hub and multiple clients connected to
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it in a hub-and-spoke fashion. The hub network forms a complete
graph. For simplicity, we assume that each silo has K clients. Our
network model thus has two tiers, the top tier of hubs, shown in
orange, that communicate with each other, and the bottom tier of
clients in each silo, shown in gray.

The training data consists ofM samples that are common across
all silos. Each sample has D features. The data is partitioned verti-
cally across the N silos so that each silo owns a disjoint set of Dj
features for all of the M samples. We can express the entire training
dataset by a matrix X ∈ RM×D . We denote set of data, i.e., the
columns of X, held in silo j by X(j). Within each silo, its data is
partitioned horizontally across its clients, so that each client holds
some rows of X(j). We denote the horizontal shard of X(j) that is
held by client k in silo j as Xk,j . Lastly, we denote a sample i of the
dataset (single row of X) as X(i), and X

(i)

(j) denotes the features of
the ith sample corresponding to silo j. We assume that each client
stores the sample labels yk,j for its data Xk,j .

Horizontal Learning

Vertical Learning

Clients / Worker Devices

Data Centers (DC)

Fig. 1: System architecture.

2.2. Loss Function

The objective is to train a global model θ̃, which is a d-vector that
can be decomposed as

θ̃ = [θ̃T(1), . . . , θ̃
T
(N)]

T

where each θ̃(j) is the block of features, or coordinates, for silo j.
The goal of the training algorithm is to minimize an objective func-
tion with following structure:

L(θ̃,X;y)
def
=

1

M

M∑
i=1

f(θ̃(1), . . . , θ̃(N);X
(i),y(i)) + λ

N∑
d=1

ω(θ̃(d))

where f has the partially separable form

f(θ̃,X(i);y(i)) = f

(
N∑
d=1

X
(i)

(d)θ̃(d) ,y
(i)

)
.

The functions ω(·) constitute a regularizer, and λ is a hyperparam-
eter. A concrete example of the loss function is an L2 regularized
square loss function for empirical risk minimization:

L(θ̃,X;y) =
1

2M
||Xθ̃ − y‖22 +

‖θ̃‖22
2

.

3. PROPOSED ALGORITHM

In this section, we present our Tiered Decentralized Coordinate De-
scent algorithm (TDCD). The pseudocode is given in Algorithm 1.
We first note that the hubs update their own corresponding blocks of
coordinates of θ̃(j) in parallel; no hub has the entire θ̃. We define

θtk,j ∈ RDj as the local version of the coordinates of the weight vec-
tor θ̃t(j) that each client updates. These local versions are initialized
by the clients at iteration t = 0.

In iteration 0, and every Qth iteration thereafter, the hubs first
average the models from the clients, where hub j, updates the jth

block coordinates of global weight θ̃t as θ̃t(j) = 1
K

K∑
k=1

[
θtk,j

]
. This

step is similar to horizontal federated learning. The hubs then agree
onQminibatches {ζτ}t+Q−1

τ=t , each containingB samples randomly
drawn from the global dataset X. The hubs communicate the ag-
gregated model and the minibatch information to their clients. The
clients, in turn, reply with the intermediate information for the sam-
ples IDs in those Q minibatches using the newest aggregated model.
It is necessary to propagate this intermediate information to allow
clients in other hubs to calculate partial derivatives during training.
We define the intermediate information for the jth coordinate block
for a single sample p as Φ

(p)

(j) = X
(p)

(j) θ̃
t
(j). For a single minibatch ζ,

each client computes a set of information Φζk,j = {Φ(p)

(j)}p∈ζ . Each
client then sends Q such sets of intermediate information to its hub
corresponding to the Q minibatches. The hub then stacks the set
of updates {Φζk,j} from each of its clients to form Φjt . Each hub j
then broadcast Φjt to other hubs to propagate this information. For
hub j, we denote the intermediate information obtained from other
hubs by Φ−j =

∑N
l=1,l 6=j Φj . Once this is done, the hub then ap-

plies a projection function for each client k to send the subset of
information from Φ−j relevant to client k′s samples to that client.
Alternatively a hub can send the entire Φ−j to the client and the
client can do the projection itself to extract the rows corresponding
to its own samples. We define a projection function πk,j such that
πk,j(Φ−j) = Φ−k,j , where Φ−k,j is the extracted relevant informa-
tion for client k of silo j.

After receiving this intermediate information, at each iteration t
each client k of silo j can now calculate its own local partial deriva-
tives of L with respect to coordinate block j. This is denoted by gk,j
and is a function of Φ−k,j , the part of Xk,j in minibatch ζt, and
the local set of weights θk,j . Each client executes Q local stochas-
tic gradient steps, on the features for their respective silos, using a
different minibatch in each iteration:

θt+1
k,j = θtk,j − ηgk,j(Φt0−k,j ,θ

t
k,j ; ζ

τ ). (1)

η is the step size (learning rate), and t0 represents the most recent
iteration t0 < t in which the client received intermediate information
from its hub. The entire process is repeated until convergence.

Informally, each silo effectively takes an approximate (stochas-
tic) gradient step towards the minimizer of L(θ̃t) along the direction
of the its coordinates every Q iterations.

In TDCD, clients only communicate their local model and in-
termediate information every Q iterations. This is in contrast to
distributed SGD algorithms, where the clients need to sync with a
coordinating hub in each iteration. This allows TDCD to save band-
width by increasing Q, especially when the the size of the model is
large. Hubs still need to exchange intermediate information for all
Q minibatches, in between local training rounds. However, sending
all information at the beginning of Q iterations, rather than in ev-
ery iteration, potentially saves network latency and overhead. The
significant bandwidth savings comes in the silos themselves, since
each hub and its clients only share the models everyQ iterations. As
a rough estimate, the intermediate information for a sample ranges
from a simple scalar value to a small vector of very few dimensions.
Therefore while training models in deep learning, the intermediate
information of B minibatches with M samples each would be of the



Algorithm 1 Tiered Decentralized Coordinate Descent (TDCD)

1: Initialize θtk,j = θinitk,j ∈ RDj , ∀k, j
2: for t = 0, . . . ,∞ do
3: if t (mod Q)=0 then
4: for j = 1, . . . , N silos in parallel do
5: Hub j computes θ̃t(j) = 1

K

∑K
k=1 θ

t
k,j

6: Randomly sample Q minibatches {ζτ}t+Qτ=t+1

7: for k = 1, . . . ,K clients in parallel do
8: Set θtk,j = θ̃t(j)
9: Send Φζk,j to hub j, for each ζ ∈ {ζτ}t+Qτ=t+1

10: end for
11: Hub j stack {Φζk,j}, ζ ∈ {ζ

τ}T+Q
τ=t+1 to form Φtj

12: All hubs exchange Φtj , ∀j = 1, . . . , N
13: Hub j calculate Φt−j =

∑
Φtp, ∀p 6= j

14: In parallel set Φt0−k,j = πk,j(Φ
t
−j) in K clients.

15: end for
16: end if
17: for j = 1, . . . , N silos in parallel do
18: for k = 1, . . . ,K clients in parallel do
19: θt+1

k,j = θtk,j − ηgk,j(Φt0−k,j ,θ
t
k,j ; ζ

τ )
20: end for
21: end for
22: end for

order of a few megabytes or less. Compared to this, the size of the
actual model can be in the order of gigabytes. We explore how Q
impacts the convergence of TDCD in the next section.

We note that at any step of training hubs can communicate their
slice of the global model with each other to form the entire global
model for use in inference purposes.

4. CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis of the TDCD al-
gorithm. Our analysis is based on the evolution of the global model
θ̃ ∈ RD following Algorithm 1. It to be noted that the components
of θ̃, θ̃(j) are realized every Q iterations, but we will study the evo-
lution of a virtual θ̃(j) at each iteration, θ̃t(j) = 1

K

∑K
k=1 θ

t
k,j .

To facilitate the analysis, we first define the notion of an auxil-
iary local vector, which represents the local view of the global model
at each client. Let ytk,j denote the auxiliary weight vector used by
client k in hub j to calculate the partial derivative gk,j(ytk,j),

ytk,j = [θt0−j ,θ
t
k,j ] (2)

where, θt0−j denotes the vector of all coordinates of θ̃ excluding
block j at iteration t, where t0 is the iteration when the client k
last updated the value of θt0−j from its hub. Therefore, when a client
takes multiple local steps to update θk,j , it uses a stale value of the
elements in the other coordinates of yk,j .

We further define the following two quantities:

Gt = [(Gt
(1))

T , . . . , (Gt
(1))

T ]T ,Gt
(j) =

1

K

K∑
k=1

gk,j(yk,j) (3)

We can then write the evolution of the global model as follows,

θ̃t+1 = θ̃t − ηGt (4)

We make the following assumptions about the loss function L
and the gradients gk,j at each client.

Assumption 1. The gradient of the loss function is Lipschitz contin-
uous with constantL; further, the partial derivative ofL with respect
to each coordinate block j is Lipschitz continuous with constant Lj ,
i.e., for all θ1,θ2 ∈ RD

‖∇L(θ1)−∇L(θ2) ‖≤ L ‖ θ1 − θ2‖ (5)
‖∇(j)L(θ1)−∇(j)L(θ2) ‖≤ Lj ‖ θ1 − θ2‖. (6)

Assumption 2. The function L is lower bounded so that for all θ ∈
RD,L(θ) ≥ Linf .

Assumption 3. Let ζ be a mini-batch drawn uniformly at random
from all samples. We assume that the data is distributed so that, for
all θ ∈ RD

Eζ|θ [gk,j(θ)] = ∇(j)L(θ) (7)

Eζ|θ
[
‖gk,j(θ)−∇(j)L(θ)‖2

]
≤ σ2

j . (8)

We also use the following definitions:

Lmax = max
1≤j≤N

Lj , σmax = max
1≤j≤N

σj

We now provide the main theoretical result of the paper. The
proof is deferred to a technical report available in the Appendix A.

Theorem 4.1. Under Assumptions 4, 5, and 6, when the step size η
satisfies the following condition:

1− ηL− η2L2
maxQ

2 ≥ 0 (9)

then, for T > 0, the expected squared norm of the gradient of L
averaged over all T iterations satisfies the following bound:

E

[
1

T

T−1∑
t=0

‖∇L(θ̃t)‖2
]
≤

2
(
L(θ̃0)− Linf

)
ηT

+
ηLNσ2

max

K

+ L2
maxη

2σ2
maxQ

2N2 (10)

We note that the bound in Theorem 4.1 converges to a non-zero
value as T → ∞. The convergence error results from the parallel
updates on the coordinate blocks (on N ) , staleness due to multiple
local iterations (on Q) and due to parallel updates based on horizon-
tal partitioning (on K) as well. With an increase in the number of
vertical partitions, the error term increases quadratically. The error
also depends quadratically on Q, however, in practice, if Q is off-
set by a suitable learning rate η, then we can leverage multiple local
iterations to achieve faster convergence as we will show in Sec. 5.
However, choosing a very small η will decrease the convergence er-
ror, but it will but increase the first term on the right hand side of
(78), leading to slower convergence.

5. EXPERIMENTAL RESULTS

We verify the convergence properties of TDCD with respect to the
different algorithm parameters of the system via a simulation. In our
experiments, each client has the same number of samples = M

K
.

5.1. Datasets

We first briefly discuss the two datasets used in this study.
Superconductivity (Convex Objective: Ridge Regression):

For the first experiments, we use the Superconductivity dataset [17],
which consists of numerical values in all coordinates. The goal is
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Fig. 2: Ridge Regression Convex Objective. Training loss vs communication rounds for variations of Q, N and K.
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Fig. 3: CNN Multi-class classification with Non-Convex Objective.
Training loss vs communication rounds for variations of Q and K.

to predict the critical temperature of superconducting materials. We
standardized the dataset before using it by normalizing each coordi-
nate to have zero mean and unit variance. We use 20, 000 samples
from the original dataset for training. We use all 81 coordinates and
include add one for bias.

MNIST (Non-Convex Objective: CNN): We train a CNN
model on the MNIST dataset [18]. MNIST is a set of 28× 28 pixels
hand-written digits images with 60,000 digits in the training set and
10,000 digits in the test set. We use N = 2 for all the experiments
and divide each MNIST image vertically into two parts (28 × 14).
Each client trains a local CNN model with a shared linear classi-
fier layer at the top that uses cross-entropy loss. The local CNNs
have two conv layers followed by a 256 dimension embedding layer
which is fed into the final classifier layer. The two feature represen-
tations of R256 are inputs to the classifier layer with R512 input and
R10 output. We thus train the weights of the final layer via TDCD
while also updating the local CNNs in each iteration.

5.2. Results

In all figures N represents the number of silos (vertical partitions
of the dataset), and K represents the number of clients in each silo.
In each of the experiments, The training loss is calculated using the
global model θ̃ and the full training data matrix every Q iterations.
We call every Qth iteration a communication round because it is
when communication between clients and hubs occur.

We first study the performance of TDCD on the convex case of
ridge regression in Fig. 2. We start with the impact of varying the
number of local iterations Q on the convergence rate. We fix the
network configuration to N=4 silos and K=5 clients per silo, with a
minibatch size of B = 100 and learning rate η = 0.001. The results
are shown in Fig. 2a. We observe that with increasing values of Q,
the convergence rate improves. This is intuitive as the clients can
train more with a larger number of local rounds between communi-

cations, however, as stated in Theorem 4.1, this can result in a larger
convergence error. This implies that by increasing the number of lo-
cal iterations at clients, we can improve the overall communication
efficiency by reducing the total number of communication rounds
required for a given loss.

In Fig. 2b, we show the impact of varying the number of verti-
cal partitions on the convergence rate. To observe results at higher
granularity, we use a subset of 2000 samples from the original train-
ing dataset. We fix K=2, Q=4, and B=20 for this experiment. We
observe that the effect of increasing N is observable but not very
strong. The inset figure shows the last five communication rounds,
and we observe that the convergence rate improves with lower value
of N , which is as per Theorem 4.1.

We next study how the number of workers in a silo effects the
convergence rate. The results are shown in Fig. 2c. We fixN=4, and
Q=4 and B = 500. Further, we use the same 2000 data points as
in the previous experiment. The inset figure here also shows the last
five communication rounds of training. We observe that variation of
convergence rate is low with varying K. This shows that K does
not play a large role as Q in its effect on the convergence rate or
convergence error.

Finally, we study the performance of TDCD with the non-
convex objective. We fix the number of silos at N=2 and the
learning rate η = 0.001 for all experiments. We first investigate
the impact of Q on the convergence rate and error. The results are
shown in Fig. 3a. Here, K=10 and B = 640. We observe that the
convergence rate improves radically for larger values of Q. This
result is similar to what we obtained from the convex case. Hence,
by choosing Q carefully it is possible to significantly decrease the
communication cost without losing performance. Lastly, in Fig. 3b,
we explore the effect of varying the number of clients at each silo.
We fix the product of K and B to 1250 across the experiments, so
that each silo effectively trains on the same number of samples in
each experiment. Similar to the convex case, we again observe that
the effect of K is very mild. Overall, we we observe that TDCD
performs well with both convex and non-convex objectives.

6. CONCLUSION

We have introduced TDCD, a communication efficient decentralized
algorithm for a multi tier network model with both horizontally and
vertically partitioned data. We provided theoretical analysis of the
algorithm convergence and its dependence on the number of verti-
cal partitions, the number of clients in each hub, and the number of
local iterations. Finally, we presented experimental results to show
convergence of our algorithm in practice. In future work, we plan
to explore the possibility of hubs communicating with each other
asynchronously to share information.
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A. PROOF OF THE THEOREM AND SUPPORTING LEMMAS

In this section provide the proofs of our theorem for convergence and the associated helping lemmas. We are omitting the details about how
the data is distributed in the clients. It is same as in the main paper.

We reiterate the objective function of the tiered decentralized coordinate descent approach with periodic averaging. The objective is to
train a global model θ̃, which is a d-vector that can be decomposed as

θ̃ = [θ̃T(1), . . . , θ̃
T
(N)]

T

where each θ̃(j) is the block of features, or coordinates, for silo j. The goal of the training algorithm is to minimize an objective function
with following structure

L(θ̃,X;y)
def
=

1

M

M∑
i=1

f(θ̃(1), . . . , θ̃(N);X
(i),y(i)) + λ

N∑
d=1

ω(θ̃(d))

where f has the partially separable form

f(θ̃,X(i);y(i)) = f

(
N∑
d=1

X
(i)

(d)θ̃(d) ,y
(i)

)
.

The functions ω(·) constitute a regularizer, and λ is a hyperparameter. A concrete example of the loss function is an L2 regularized square
loss function for empirical risk minimization:

L(θ̃,X;y) =
1

2M
||Xθ̃ − y‖22 +

‖θ̃‖22
2

.

A.1. NOTATION

We first define the notations to be used in analyzing the convergence of TDCD.

• θ̃ the D × 1 global model.

• θ̃(j) is the jth block of θ̃, so that θ̃ = [θ̃T(1), . . . , θ̃
T
(N)]

T . Note that θ̃(j) is a virtual vector. It is realized at a hub j every Q iterations,
but we will study the evolution of this virtual vector in every iteration.

• θtk,j ∈ RDj are the local versions of the coordinates of the weight vector θ̃t(j) that each client k if hub j updates.

• θ̃t−j is the vector of all coordinates in θ̃, excluding block j, at iteration t.

• θk,j is the local copy of θ̃(j) at client k in silo j, so that θ̃(j) = 1
K

∑K
k=1 θk,j .

• ytk,j = [θt0−j ,θ
t
k,j ] is the parameter vector that client j in silo k at iteration t, where t0 is the iteration that client k last updated θt0−j .

• gk,j(yk,j ; ζ) is the partial derivative of L with respect to coordinate block j, computed at client k in silo j using the coordinates and
rows at client k corresponding to minibatch ζ. For simplicity, we will write gk,j(yk,j) when it is clear which minibatch is used.

• Gt = [(Gt
(1))

T , . . . , (Gt
(N))

T ]T , whereGt
(j) = 1

K

∑K
k=1 gk,j(yk,j)

• Ht = [(Ht
(1))

T , . . . , (Ht
(N))

T ]T , whereHt
(j) = 1

K

∑K
k=1∇(j)L(yk,j)

Further, for any vectorm ∈ Rd,m(l) denotes the lth block corresponding to the lth silo in vectorm.
It to be noted that components on θ̃ i.e. θ̃(j) are realized every Q iterations when the hubs communicate with clients and with other

hubs, but we will study the evolution of these virtual vectors at each iteration. Therefore, based on the above definitions, assumptions and the
TDCD algorithm, we can express the evolution of the virtual global parameter/weight vector in the following form:

θ̃ =


θ̃t(1)
θ̃t(2)

...
θ̃t(N)


D×1

=
1

K


∑K
k=1 θ

t
k,1∑K

k=1 θ
t
k,2

...∑K
k=1 θ

t
k,N


D×1

, θ̃t+1 = θ̃t − η

K


∑K
k=1 gk,1(ytk,1; ζt)∑K
k=1 gk,2(ytk,2; ζt)

...∑K
k=1 gk,N (ytk,N ; ζt)


D×1

(11)

In this case, we update all coordinates of the global weight vector θ̃t , virtually at each time step t. we have the virtual gradient at each
time instant t as:

Gt 4=
1

K


∑K
k=1 gk,1(ytk,1; ζt)∑K
k=1 gk,2(ytk,2; ζt)

...∑K
k=1 gk,N (ytk,N ; ζt)





A.2. ASSUMPTIONS

We make the following assumptions about the loss function L and the gradients gk,j at each client.

Assumption 4. The gradient of the loss function is Lipschitz continuous with constant L; further, the partial derivative of L with respect to
each coordinate block j is Lipschitz continuous with constant Lj , i.e., for all θ1,θ2 ∈ RD

‖∇L(θ1)−∇L(θ2) ‖ ≤ L ‖ θ1 − θ2‖ (12)
‖∇(j)L(θ1)−∇(j)L(θ2) ‖ ≤ Lj ‖ θ1 − θ2‖. (13)

Assumption 5. The function L is lower bounded so that for all θ ∈ RD,L(θ) ≥ Linf .

Assumption 6. Let ζ be a mini-batch drawn uniformly at random from all samples. We assume that the data is distributed so that, for all
θ ∈ RD

Eζ|θ [gk,j(θ)] = ∇(j)L(θ) (14)

Eζ|θ
[
‖gk,j(θ)−∇(j)L(θ)‖2

]
≤ σ2

j . (15)

We also use the following definitions:
Lmax = max

1≤j≤N
Lj , σmax = max

1≤j≤N
σj

A.3. CONVERGENCE ANALYSIS

We can write the evolution of the global model from Sec. A.1 as:

θ̃t+1 = θ̃t − ηGt. (16)

We will study the evolution of this global model. We will use Et to denote Eζt|θ̃t .

Et[L(θ̃t+1)]− L(θ̃t) ≤ Et〈∇L(θ̃t), θ̃t+1 − θ̃t〉+
L

2
Et ‖θ̃t+1 − θ̃t‖2 (17)

≤ − η Et〈∇L(θ̃t),Gt〉︸ ︷︷ ︸
T1

+
η2L

2
Et ‖Gt‖2︸ ︷︷ ︸
T2

(18)

We will use the following lemma to simplify T1.

Lemma 1.

Et‖Gt
(j) −Ht

(j)‖2 ≤
σ2
max

K

Proof.

Et‖Gt
(j) −Ht

(j)‖2 (19)

= Et

∥∥∥∥∥ 1

K

K∑
k=1

gk,j(y
t
k,j)−

1

K

K∑
k=1

∇(j)L(ytk,j)

∥∥∥∥∥
2

(20)

=
1

K2
Et

 K∑
k=1

‖gk,j(ytk,j)−∇(j)L(ytk,j)‖2 +

K∑
k=1

K∑
l=1,l 6=k

〈gk,j(ytk,j)−∇(j)L(ytk,j), gl,j(yk,j)
t)−∇(j)L(ytl,j)〉

 (21)

=
1

K2

K∑
k=1

Et‖gk,j(yk,j)t)−∇(j)L(ytk,j)‖2 (22)

+
1

K2

K∑
k=1

K∑
l=1,l 6=k

〈Et
[
gk,j(y

t
k,j)−∇(j)L(ytk,j)

]
,Et

[
gl,j(y

t
l,j)−∇(j)L(ytl,j)

]
〉 (23)

Applying Assumption 6 to (23), we observe that we can bound the variance in the first sum and that the cross terms in the double summation
evaluate to zero. We therefore have the following:

Eζt|θ̃t‖G
t
(j) −Ht

(j)‖2 ≤
1

K2

K∑
k=1

σ2
j (24)



≤
σ2
j

K
(25)

≤ σ2
max

K
. (26)

Lemma 2.

Et ‖ Gt ‖2≤ Nσ2
max

K
+

1

K

N∑
j=1

K∑
k=1

‖∇(j)L(ytk,j)‖2 (27)

Proof.

Et ‖ Gt ‖2 =

N∑
j=1

Et‖Gt
(j)‖2 (28)

(a)
=

N∑
j=1

Et
[
‖Gt

(j) − Et[Gt
(j)]‖2

]
+

N∑
j=1

‖Et[Gt
(j)]‖2 (29)

=

N∑
j=1

Et
[
‖Gt

(j) −Ht
(j)‖2

]
+

N∑
j=1

‖Ht
(j)‖2 (30)

(b)

≤
N∑
j=1

σ2
max

2K
+

N∑
j=1

‖ 1

K

K∑
k=1

∇(j)L(ytk,j)‖2 (31)

(c)

≤ Nσ2
max

K
+

1

K

N∑
j=1

K∑
k=1

‖∇(j)L(ytk,j)‖2 (32)

where (a) follows directly from Assumption 6 and the definitions of Gt and Ht. The simplification in (b) is from Lemma 1, and (c) is
because

∑N
i=1 ‖ ai ‖

2≤‖
∑N
i=1 ai ‖

2≤ N
∑N
i=1 ‖ ai ‖

2 .

We next present a lemmas to lower bound T1.

Lemma 3.

Et
[
〈∇L(θ̃t),Gt〉

]
=

1

2
‖∇L(θ̃t)‖2 +

1

2K

N∑
j=1

K∑
k=1

‖∇(j)L(ytk,j)‖2 −
1

2K

N∑
j=1

K∑
k=1

‖∇(j)L(θ̃t)−∇(j)L(ytk,j)‖2 (33)

Proof. We have:

Et〈∇L(θ̃t),Gt〉 (34)

=

N∑
j=1

〈
∇(j)L(θ̃t),Et

[
Gt

(j)

]〉
(35)

(a)
=

N∑
j=1

〈
∇(j)L(θ̃t),Ht

(j)

〉
(36)

=
1

K

N∑
j=1

K∑
k=1

〈∇(j)L(θ̃t),∇(j)L(ytk,j)〉 (37)

=
1

2K

N∑
j=1

K∑
k=1

[
‖∇(j)L(θ̃t)‖2 + ‖∇(j)L(ytk,j)‖2 − ‖∇(j)L(θ̃t)−∇(j)L(ytk,j)‖2

]
(38)

=
1

2
‖∇L(θ̃t)‖2 +

1

2K

N∑
j=1

K∑
k=1

‖∇(j)L(ytk,j)‖2 −
1

2K

N∑
j=1

K∑
k=1

‖∇(j)L(θ̃t)−∇(j)L(ytk,j)‖2 (39)

where, in (a), we use Assumption 6.

We now define a lemma to relate the expected local and expected global gradient.



Lemma 4.
Et‖gk,j(θ)‖2 ≤ σ2

j + ‖∇(j)L(θ)‖2

Proof. We observe that

Et‖gk,j(θ)‖2 = Et‖gk,j(θ)− Et[gk,j(θ)]‖2 + ‖Et[gk,j(θ)]‖2 (40)

= Et‖gk,j(θ)−∇(j)L(θ)‖2 + ‖∇(j)L(θ)‖2 (41)

≤ σ2
j + ‖∇(j)L(θ)‖2 (42)

where the last inequality follows from Assumption 6.

A.4. PROOF OF THEOREM 4.1

We now prove our main result. We return to the expression in (18),

Et[L(θ̃t+1)]− L(θ̃t) ≤ −η Et〈∇L(θ̃t),Gt〉+
η2L

2
Et ‖Gt‖2 (43)

From Lemmas 2 and 3, we now have

Et[L(θ̃t+1)]− L(θ̃t) ≤ (44)

− η

2
‖∇L(θ̃t)‖2 − η

2K

N∑
j=1

K∑
k=1

‖∇(j)L(ytk,j)‖2 +
η

2K

N∑
j=1

K∑
k=1

‖∇(j)L(θ̃t)−∇(j)L(ytk,j)‖2 (45)

+
η2L

2K

N∑
j=1

K∑
k=1

‖∇(j)L(ytk,j)‖2 +
η2LNσ2

max

2K
(46)

≤− η

2
‖∇L(θ̃t)‖2 − η

2K
(1− ηL)

N∑
j=1

K∑
k=1

‖∇(j)L(ytk,j)‖2 +
ηL2

max

2K

N∑
j=1

K∑
k=1

‖θ̃t − ytk,j‖2 (47)

+
η2LNσ2

max

2K
(48)

where (47) follows from Assumption 4. Rearranging, we get

‖∇L(θ̃t)‖2 ≤2

η

(
L(θ̃t)− Et[L(θ̃t+1)]

)
+
L2
max

K

N∑
j=1

K∑
k=1

‖θ̃t − ytk,j‖2 +
ηLNσ2

max

K
(49)

− 1

K
(1− ηL)

N∑
j=1

K∑
k=1

‖∇(j)L(ytk,j)‖2 (50)

We now take the total expectation and average all iterates from t = 0, . . . , T

E

[
1

T

T−1∑
t=0

‖∇L(θ̃t)‖2
]
≤ 2

ηT

(
L(θ̃0)− Linf

)
+
L2
max

TK

T−1∑
t=0

N∑
j=1

K∑
k=1

E‖θ̃t − ytk,j‖2 +
ηLNσ2

max

K
(51)

− 1

TK
(1− ηL)

T−1∑
t=0

N∑
j=1

K∑
k=1

E‖∇(j)L(ytk,j)‖2 (52)

We use the following lemmas to simplify the expression above.

Lemma 5. Let t0 be the most recent iteration in which the hubs exchanged information and sent new models to the clients prior to iteration
t. Then

1

K

K∑
k=1

‖θ̃t(j) − ytk,j,(j)‖2 ≤
Qη2

K

K∑
k=1

t−1∑
τ=t0

‖gk,j(yτk,j)‖2 (53)

Proof.

1

K

K∑
k=1

‖θ̃t(j) − ytk,j,(j)‖2 =
1

K

K∑
k=1

‖ θ̃t(j) − θtk,j ‖2 (54)



=
1

K

K∑
k=1

‖ θtk,j − θ̃t0(j) − (θ̃t(j) − θ̃t0(j)) ‖
2 (55)

=

∥∥∥∥∥(θtk,j − θ̃t0(j))−
(

1

K

K∑
l=1

(θtl,j − θ̃t0(j))

)∥∥∥∥∥
2

(56)

We observe that, for an arbitrary set of vectors {zl}Kk=1,

1

K

K∑
k=1

∥∥∥∥∥zk − 1

K

K∑
l=1

zl

∥∥∥∥∥
2

≤ 1

K

K∑
k=1

‖zk‖2. (57)

Letting zl = θtl,j − θ̃t0(j), we have

1

K

K∑
k=1

‖θ̃t(j) − ytk,j,(j)‖2 ≤
1

K

K∑
k=1

∥∥∥θtk,j − θ̃t0(j)∥∥∥2 (58)

≤ 1

K

K∑
k=1

(t− 1− t0)η2
t−1∑
τ=t0

‖ gk,j(yτk,j) ‖2 (59)

≤ Qη2

K

K∑
k=1

t−1∑
τ=t0

‖ gk,j(yτk,j) ‖2 . (60)

Lemma 6.

L2
max

K

N∑
j=1

K∑
k=1

‖θ̃t − ytk,j‖2 ≤
η2L2

maxQN

K

[
N∑
j=1

t−1∑
τ=t0

K∑
p=1

‖ gp,j(yτp,j) ‖2
]

(61)

Proof.

L2
max

K

N∑
j=1

K∑
k=1

‖θ̃t − ytk,j‖2 (62)

=
L2
max

K

N∑
j=1

K∑
k=1

 N∑
l 6=j

‖θ̃t(l) − θ̃t0(l)‖
2 + ‖θ̃t(j) − ytk,j,(j)‖2

 (63)

=
L2
max

K

N∑
j=1

K∑
k=1

 N∑
l 6=j

‖θ̃t0(l) −
η

K

t−1∑
τ=t0

K∑
p=1

gp,l(y
τ
p,l)− θ̃t0(l)‖

2 + ‖θ̃t(j) − ytk,j,(j)‖2
 (64)

≤L
2
max

K

N∑
j=1

K∑
k=1

η2

K
(t− 1− t0)

N∑
l 6=j

t−1∑
τ=t0

K∑
p=1

‖gp,l(yτp,l)‖2 +
L2
max

K

N∑
j=1

K∑
k=1

‖θ̃t(j) − ytk,j,(j)‖2 (65)

≤η
2L2

maxQ

K2

N∑
j=1

K∑
k=1

N∑
l 6=j

t−1∑
τ=t0

K∑
p=1

‖gp,l(yτp,l)‖2 +
L2
max

K

N∑
j=1

K∑
k=1

‖θ̃t(j) − ytk,j,(j)‖2 (66)

=
η2L2

maxQ(N − 1)

K

N∑
j=1

t−1∑
τ=t0

K∑
p=1

‖gp,j(yτp,j)‖2 +
L2
max

K

N∑
j=1

K∑
k=1

‖θ̃t(j) − ytk,j,(j)‖2 (67)

≤η
2L2

maxQ(N − 1)

K

N∑
j=1

t−1∑
τ=t0

K∑
p=1

‖gp,j(yτp,j)‖2 + L2
max

N∑
j=1

Qη2

K

K∑
k=1

t−1∑
τ=t0

‖ gk,j(yτk,j) ‖2 (68)

=
η2L2

maxQN

K

N∑
j=1

t−1∑
τ=t0

K∑
p=1

‖gp,j(yτp,j)‖2. (69)

Here, in (63) we use the fact that each hub sent the updated model to its clients in iteration t0, where t−t0 ≤ Q. In (65), we use the inequality
‖
∑N
i=1 ai ‖

2≤ N
∑N
a=1 ‖ ai ‖

2 and in (66), we use the fact that Q ≥ t− 1− t0. Finally, in (68) we use Lemma 5.



Applying Lemma 6, we can further bound (52) as

E

[
1

T

T−1∑
t=0

‖∇L(θ̃t)‖2
]
≤ 2

ηT

(
L(θ̃0)− Linf

)
+
η2L2

maxQN

TK

T−1∑
t=0

N∑
j=1

t−1∑
τ=t0

K∑
p=1

E‖gp,j(yτp,j)‖2 (70)

+
ηLNσ2

max

K
− 1

TK
(1− ηL)

T−1∑
t=0

N∑
j=1

K∑
k=1

E‖∇(j)L(ytk,j)‖2 (71)

≤ 2

ηT

(
L(θ̃0)− Linf

)
+
η2L2

maxQ
2N

TK

T−1∑
t=0

N∑
j=1

K∑
p=1

E‖gp,j(ytp,j)‖2 (72)

+
ηLNσ2

max

K
− 1

TK
(1− ηL)

T−1∑
t=0

N∑
j=1

K∑
k=1

E‖∇(j)L(ytk,j)‖2 (73)

≤ 2

ηT

(
L(θ̃0)− Linf

)
+
η2L2

maxQ
2N

TK

T−1∑
t=0

N∑
j=1

K∑
p=1

(
σ2
j + E‖∇(j)L(ytp,j)‖2

)
(74)

+
ηLNσ2

max

K
− 1

TK
(1− ηL)

T−1∑
t=0

N∑
j=1

K∑
k=1

E‖∇(j)L(ytk,j)‖2 (75)

≤ 2

ηT

(
L(θ̃0)− Linf

)
+
ηLNσ2

max

K
+ L2

maxη
2σ2
maxQ

2N2 (76)

− 1

TK

[
1− ηL− η2L2

maxQ
2] T−1∑

t=0

N∑
j=1

K∑
k=1

E‖∇(j)L(ytk,j)‖2 (77)

where we can simplify the double summation in (72) because t − 1 − t0 ≤ Q, and in (75), we apply Lemma 4.

Assuming η is chosen so that 1− ηL− η2L2
maxQ

2 ≥ 0, we have

E

[
1

T

T−1∑
t=0

‖∇L(θ̃t)‖2
]
≤ 2

ηT

(
L(θ̃0)− Linf

)
+
ηLNσ2

max

K
+ L2

maxη
2σ2
maxQ

2N2 (78)

This completes the proof. �
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