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ABSTRACT

Language models (LMs) for virtual assistants (VAs) are typ-

ically trained on large amounts of data, resulting in pro-

hibitively large models which require excessive memory

and/or cannot be used to serve user requests in real-time. En-

tropy pruning results in smaller models but with significant

degradation of effectiveness in the tail of the user request

distribution. We customize entropy pruning by allowing for

a keep list of infrequent n-grams that require a more relaxed

pruning threshold, and propose three methods to construct

the keep list. Each method has its own advantages and dis-

advantages with respect to LM size, ASR accuracy and cost

of constructing the keep list. Our best LM gives 8% average

Word Error Rate (WER) reduction on a targeted test set, but

is 3 times larger than the baseline. We also propose discrim-

inative methods to reduce the size of the LM while retaining

the majority of the WER gains achieved by the largest LM.

Index Terms— ASR, LM Pruning, discriminative, data

selection, error prediction

1. INTRODUCTION

VAs are popular services [1] that help users accomplish

multiple tasks through voice queries. The Automatic Speech

Recognition (ASR) engine, the VA component responsible for

converting spoken queries into text, faces a challenge due to

the many task domains VAs supports. Task domains include

performing actions on the device where the VA runs (e.g.

placing a call on a cell phone) or querying information about

real-world events such as the outcome of a sports competition.

Accurately recognizing queries that concern contempo-

rary events is a difficult problem due to the dynamic nature of

the world. Hence, within VA systems, the language models

(LMs) of the ASR system are typically trained on synthetic

queries that are generated from knowledge bases [2], in ad-

dition to transcribed user queries. For example, when the

artist Kanye West announced his album Donda: With Child

in July 2020, the artificial queries “play Donda With Child”

1Work done while the first author was an intern at Apple.
⋆Equal contribution.

and “what is Donda With Child” are included within LM

training data. Likewise, artificial queries corresponding to

entities that may occur infrequently within real usage data

(i.e., tail entities), but should still be recognized accurately,

are also included within LM training data.

As users expect low-latency responses from online ser-

vices [3], n-gram backoff LMs [4] are frequently used, along

with entropy-based pruning [5] to reduce speech recognition

runtime and memory consumption. Entropy-based prun-

ing removes n-grams from an LM that have the smallest

impact on training set perplexity. This can be problematic

if explicitly-observed n-grams from synthetic queries are

removed, making them indistinguishable from unobserved

n-grams in the training data. However, entropy pruning can

be modified to apply different pruning thresholds to a subset

of LM n-grams, and hence, we use a more relaxed pruning

threshold for specific (tail) n-grams that enhance recognition.

In this paper we investigate how to determine the minimal

set of n-grams that require a more relaxed pruning thresh-

old from textual features. In particular, we are interested in

improving recognition on a set of synthetic queries Q that

we know we want our VA to recognize, but are absent or

underrepresented in our live usage data. This problem is

challenging due to the large number of synthetic queries, the

lack of generalization in n-gram LMs, the dynamicity of live

usage data, and VA runtime constraints.1

Our research questions are: (RQ1) Are there text-based

signals that are a good predictor for speech recognition dif-

ficulty? (RQ2) Can we determine an optimal subset of

synthetic query n-grams that need a more relaxed pruning

threshold without degrading speech recognition effective-

ness? We contribute: (1) a formal framework for applying

different entropy-based pruning thresholds on subsets of n–

grams, (2) three methods for determining a subset of n-grams

for which pruning needs to be relaxed to improve their recog-

nition, (3) insight into which signals are useful to predict

speech recognition difficulty directly from text.

1We also tried a variety of different smoothing methods [6] to try to

achieve the same goal, including Kneser-Ney smoothing [7, 8]; no significant

improvements on our tail- and entity-rich test sets were observed.
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2. CUSTOMIZED PRUNING FOR QUERIES

We describe three methods for pruning backoff LMs, all of

which build upon entropy-based pruning [5], with the goal

of improving recognition on a set of synthetic queries Q. In

entropy-based pruning (EP), n-grams that are estimated to in-

crease training data perplexity by less than a threshold, θ, are

greedily removed from a backoff n-gram LM. We extend this

approach by introducing a keep list of n-grams. The keep list

defines a set of n-grams, extracted from the queries in Q, for

which a more relaxed threshold, θkeep, will be applied. Notice

that even though we apply this extension to entropy pruning

and a set of synthetic queries, it can in principle be applied to

any type of n-gram LM pruning (e.g. [9]) and any dataset for

which you want to improve recognition. The three methods

described below differ only in the way the keep list is gener-

ated. Each method provides a different space of trade-offs be-

tween keep list generation cost, LM size, and ASR accuracy.

2.1. Query-driven Entropy Pruning

In query-driven entropy pruning (QEP), we generate the keep

list by extracting n-grams from every query q∈Q. Using the

full set of synthetic queries does not require extra processing

and gives the best ASR accuracy on tail- and entity-rich test

sets, but can easily blow up the size of the LM. While effec-

tive, QEP is infeasible to apply when Q is large and contains

many unique n-grams.

2.2. Error-driven Entropy Pruning

To reduce the number of n-grams in the keep list, we apply

a discriminative approach (e.g., [10, 11, 12]), error-driven

entropy pruning (EEP). Here we only want to exclude those

n-grams from pruning for which our baseline ASR, using

an entropy-pruned LM, fails. However, large-scale manual

transcription of audio is expensive, and we want to optimize

the ASR accuracy of data that is possibly heavily underrepre-

sented in real user data. Therefore, for every phrase in Q, we

generate audio with Text-To-Speech (TTS) and recognize it

with our baseline ASR (see [13] for a similar approach). The

decoding errors are then used as a source to extract n-grams

for the keep list. This TTS–ASR loop is costly both in terms

of time and computational resources and thus prohibitive for

large datasets.

2.3. Approximate Error-driven Entropy Pruning

The TTS–ASR loop can be avoided if we can predict, based

on textual features alone, whether a query q will be recog-

nized incorrectly by the baseline ASR. Approximate error-

driven entropy pruning (AEEP) – works as follows: we train

a binary classifier (see §4.1) on a training set TQ, which is

sampled from the same distribution as Q, that predicts the out-

come of the TTS–ASR loop, and more specifically, whether

an n-gram will be recognized incorrectly. After training, we

use that classifier to select a subset of Q as keep list.

For every unique query qi ∈ TQ in our dataset, we apply

the TTS–ASR loop to obtain q̃i, the top-hypothesis after rec-

ognizing the synthesized audio of phrase qi. Subsequently,

we obtain an alignment (edit distance) between qi and q̃i and

extract n-grams from qi. The input to our model is an n-gram

extracted from qi and it is assigned a positive label if the

target token in the n-gram (e.g. the target token in a 4-gram

is the 4th token) differs from its aligned token in q̃i. Every

instance is represented as a real-valued feature vector. We

consider five categories of features:

Word-level features. We compute n-gram statistics, includ-

ing n-gram count and frequency in TQ, and whether the n-

gram context words and/or target word are out-of-vocabulary.

Language model features. We compute features derived

from the baseline entropy-pruned LM, such as log probabil-

ity, perplexity and entropy, of the full n-gram and of the target

word given the context.

Phoneme-level features. Our VA lexicon is generated based

on a list of pre-defined word-pronunciation mappings for

frequent words and exceptions, and a grapheme-to-phoneme

tool (G2P, see §3) that automatically generates pronuncia-

tions for words that are not in that list. For a given n-gram,

we generate phonemes for each word individually with our

G2P (even when the word occurs in the pre-defined list) and

join them together to create the phoneme string and cor-

responding phoneme n-grams. From these, we extract the

following features: the number of phonemes, whether the

phoneme string contains infrequent phonemes, whether the

word-pronunciation mapping occurs in the pre-defined list,

and the edit distance between the phoneme string generated

using G2P and the pre-defined pronunciation (if present).

Template features. Our dataset of synthetic queries consists

of a set of templates (e.g. “Who is the position-tag of

team-tag?”) where the tags are replaced with entities. We

tag every word of the utterance to be either a template token

or entity and create two features: whether the target word is

an entity and whether any word in the n-gram is an entity.

Phonetic confusion features. For each n-gram, we take

the target word, extract its phoneme string and compute the

set of phoneme strings with an edit distance of 1. For each

phoneme string in that set, we check if it maps to any of

the words in the vocabulary and if it does, we compute the

total log probability of the n-gram where the target word is

replaced with the new mapped word. We store the highest of

these log probabilities as a feature.

3. EXPERIMENTAL SETUP

Training LMs. We train our LMs on manually and automati-

cally transcribed anonymized VA requests, and on the dataset

of synthetic queries Q, which consists of a large set of do-

mains, e.g. sports, music and home automation. The queries

consist of a set of templates with slots and a list of entities

that can fill those slots (§2.3). Both templates and entities are

2



typically derived from real user data and thus have have prior

probabilities that are used to sample the synthetic requests. In

our experiments, query set Q consists of 2.8B queries (112M

unique) spanning 27 domains. The total training data contains

more than 10B utterances.2

Pruning methods. Query set Q is also used for our three

proposed pruning methods to extract the following: all pos-

sible n-grams (QEP), a subset of n-grams based on the errors

collected through the TTS–ASR loop (EEP), and a subset of

n-grams based on the classifier trained on the output of the

TTS–ASR loop (AEEP). In addition, we compare against reg-

ular entropy pruning (EP), where Q is not taken into account.

Evaluating the AEEP classifier. To assess the utility of

AEEP, we train on all domains except one and validate and

test on a held-out domain. We consider only one held out

domain, that of sports, because it is the only domain for

which we have domain-specific test sets using both manually

transcribed user requests and synthesized requests.

ASR accuracy evaluation. After applying the pruning meth-

ods outlined above, we evaluate WER on three main test

sets: (1) General VA contains VA requests sampled from the

actual distribution, thus containing mostly frequent/head ut-

terances. (2) Sports is a sample of less frequent VA requests

for the sports domain. (3) TTS-All consists of synthesized

requests, it is sampled from the same templates as Q but is

a different instance. Thanks to the prior probabilities, we

can make a distinction between subsets of TTS-All that con-

tain utterances from the head (top 10%), torso (10-50%) and

tail (50-100%) of the distribution. TTS-Sports is a subset

of TTS-All containing all utterances related to sports. Our

goal is to improve WER (with a minimum increase in LM

size) on the Sports and TTS-All test sets, while not degrading

recognition effectiveness on the General VA test set.

System description. Our ASR system consists of an acous-

tic model that is a deep convolutional neural network [14],

a 4-gram LM with Good-Turing smoothing in the first pass

(see [15, 16] for details), and the same LM interpolated with

a Feed-Forward Neural Network (FFNN) LM [17] in the

second pass. To build a scalable TTS–ASR loop, we use our

previous generation speech synthesizer, a unit selection sys-

tem described in [18]. We use scikit-learn [19] to train binary

classifiers for AEEP. For combining entropy pruning with a

keep list we modified SRILM [20]. Our G2P is an LSTM

encoder-decoder architecture with attention (similar to [21]).

For all experiments we set θ = 6e− 9 and θkeep = 0, which

means that all n-grams in the keep list are excluded from

pruning. We experimented with different values for θkeep as

an alternative approach to reduce the size of the LM, but did

not observe good improvements. All experiments reported

here are for American English.3

2We are unable to provide the exact number due to confidentiality. The

manually transcribed dataset is a small random sample.
3For QEP compared to EP, we observe similar WER reductions for sev-

eral other languages/regional variants, e.g., German and Mandarin Chinese.
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Fig. 1. Recall@k for the sports domain.

4. RESULTS

4.1. AEEP Classifier

In this section, we report the results for training a binary clas-

sifier on the output of the TTS–ASR loop to predict whether

an n-gram will be recognized incorrectly. Comparing 4 dif-

ferent model types, Random Forests (RF), AdaBoost, linear

support-vector machines and FFNNs, we found that RFs

achieved the best results on the validation data. Hence, all

experiments reported below use RFs.

We parameterize our experiments based on the number

of n-grams to consider: We take the top-k% of n-grams as

ranked by the classifier confidence score and assign them to

the positive class that will form the keep list. In Fig. 1, we

show recall@k for the sports domain: the relative number of

n-grams correctly classified as positive if k% of the ranked

data is assigned to the positive class/keep list. We observe

good performance, with a recall of 0.65 at 40%. For the

downstream task (§4.2), we select this 40% of n-grams as the

keep list for AEEP (Sports). For our ablation study, we rank

the features according to the importance assigned to them

by the RF. We find that by using just the top-3 features to

train a new RF, i.e. (1) log probability of target word given

context, (2) log probability of the full n-gram and (3) largest

log probability of the n-gram at an edit distance of 1, we still

obtain a recall of 0.63 at 40%. We will use the data selected

by this model as well in §4.2 (AEEP–Top-3).

These results provide an answer to RQ1: Yes, there are

text-based signals that can predict ASR difficulty. LM and

phonetic confusion features are the most important ones.

4.2. ASR Accuracy

We now evaluate our 3 customized pruning approaches in

our ASR system. We set our success criterion to minimize

the size of a LM while improving WER compared to that

of a system using an entropy-pruned LM. In the last row of

Table 1, we show the size of each LM in number of n-grams.

QEP roughly triples the size of the entropy-pruned LM, while

EEP doubles it. The unpruned LM contains 313M n-grams

and is too large to use in ASR decoding. In our ASR system,

using the larger LMs leads to increased, but still acceptable,

memory usage, and we observe negligible impact on the de-

coding speed. Since all our proposed approaches increase

3



Table 1. WER results (best result per test set in bold) and size (last row) for LMs with various pruning strategies. EP base is the

baseline, EP∼ LMs are entropy-pruned LMs of the same size as the proposed models. AEEP uses all features, and AEEP–Top-3

uses the top-3 features after feature selection. ‘All domains’ and ‘Sports domain’ in the top row refer to the query set used to

generate the n-gram set.

Test set # utts.
EP All domains Sports domain

base EP∼ QEP EP∼ EEP EP∼ QEP EP∼ EEP AEEP AEEP–Top-3

General VA 49k 4.13 4.08 4.13 4.09 4.13 4.13 4.13 4.14 4.13 4.13 4.13

Sports 4k 4.72 4.47 4.32 4.44 4.41 4.70 4.25 4.69 4.38 4.27 4.31

TTS-All 100k 15.07 14.42 13.89 14.64 14.00 14.95 14.22 15.00 14.27 14.26 14.27

Head 32k 8.54 7.85 7.38 8.05 7.49 8.40 7.73 8.46 7.76 7.78 7.78

Torso 34k 15.38 14.64 13.79 14.91 13.95 15.23 14.15 15.29 14.24 14.22 14.24

Tail 34k 20.80 20.25 19.99 20.47 20.06 20.71 20.28 20.76 20.31 20.29 20.29

TTS-Sports 28k 19.12 18.37 15.82 18.64 15.95 18.98 15.75 19.04 15.95 15.93 15.96

Number of n-grams 22M 71M 71M 45M 45M 27M 27M 25M 25M 25M 25M

the size of the LM, we created additional EP baselines of the

same size for each pruning strategy for a fair comparison in

terms of LM size – see the EP∼ columns in Table 1.

The first row of Table 1 shows that none of the pruning

approaches hurts the WER on our regular, head-heavy gen-

eral VA test set. On the test sets representing the usage that

we want to improve on (i.e., tail utterances with many named

entities), we see consistent WER reductions for all settings.

QEP leads to the largest LMs and the best WER results

on TTS-All, with 8% relative WER reduction compared to

the baseline EP LM, while the EP LM of the same size (EP∼
column to the left of QEP) has only a 4% reduction. On the

sports test with user queries we also observe a WER reduction

of 8%, compared to 5% for EP∼. Looking at results qual-

itatively, we observe that the EP LMs do not contain many

higher order n-grams that make a difference, e.g. who is Phil

Bengtson (in TTS-All) is recognized correctly by the QEP

LM because it contains all relevant higher-order n-grams

while the EP LMs only contain the unigrams.

The EEP LM, that is significantly smaller, only leads to

small WER degradations compared to the QEP LM. We ob-

serve 7% relative WER reduction w.r.t to the baseline on TTS-

All, compared to only 3% for the corresponding EP∼ LM.

Finally, approximating the TTS–ASR loop with AEEP

gives us WER results that are close to the real decoding er-

rors (EEP). The AEEP model using all features described in

§2.3 gives a 17% relative WER reduction with respect to the

baseline EP LM on the TTS-Sports test set, and 10% on the

Sports test set extracted from real user data. AEEP–Top-3,

the model using only the top-3 features (§4.1), is on par with

the variant using all features. On the Sports test set with

real user requests, AEEP does even better than EEP. We hy-

pothesize that EEP is overfitting on the data that is used for

the TTS–ASR loop, while AEEP counteracts this problem

because it approximates the results of the TTS–ASR loop.

For both the TTS-based error-driven pruning (EEP) and

its approximation (AEEP), we select about 40% of the full

Sports dataset for the keep list. One could argue that any

addition of sports-related n-grams to the LM will improve the

WER on sports test sets. Thus, as a sanity check we randomly

select 40% of the sports n-grams and use it as the keep list.

The resulting LM gives a WER of 16.27 on the TTS-Sports

test set, which is still 0.3 absolute worse than AEEP. We can

conclude that the 40% selected by EEP and AEEP is a more

meaningful selection than a randomly selected 40%.

We can conclude that w.r.t. RQ2 the optimal set of syn-

thetic query n-grams that require a more relaxed pruning

threshold can be the full set (§2.1) if there are no memory

limits. However, we showed that it is possible to retain the

majority of the WER gain with a much smaller LM by select-

ing n-grams with a model trained on textual features alone.

5. CONCLUSIONS

We explored three methods to customize LM pruning to im-

prove ASR accuracy on infrequent and entity-rich utterances,

by constructing a keep list of n-grams that require a more

relaxed pruning threshold. QEP results in LMs that are three

times larger than the baseline and give relative WER reduc-

tions of on average 8%, both on a targeted synthetic test set

and a test set with user queries. EEP and the more efficient

AEEP reduce the size of the keep list by selecting only de-

coding errors, resulting in LMs that are only twice as large

as the baseline and still have good WER improvements of

17% on the domain-specific synthetic test set and 10% on the

user query test set. We also showed that we can predict ASR

difficulty based on textual signals.

In our future work, we would like to explore more text-

only approaches to customize pruning, e.g. by modifying the

pruning criterion itself or selecting data based on LM features

and improved (FST-based) phonetic confusion features.

Acknowledgements. We thank Youssef Oualil, Amr Mousa, Russ

Webb, Barry Theobald for their comments and feedback.
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