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ABSTRACT
Blind calibration of sensors arrays (without using calibration signals)
is an important, yet challenging problem in array processing. While
many methods have been proposed for “classical” array structures,
such as uniform linear arrays, not as many are found in the context
of the more “modern” sparse arrays. In this paper, we present a novel
blind calibration method for 2-level nested arrays. Speci�cally, and
despite recent contradicting claims in the literature, we show that
the Least-Squares (LS) approach can in fact be used for this purpose
with such arrays. Moreover, the LS approach gives rise to optimally-
weighted LS joint estimation of the sensors’ gains and phases o�sets,
which leads to more accurate calibration, and in turn, to higher accu-
racy in subsequent estimation tasks (e.g., direction-of-arrival). Our
method, which can be extended to K-level arrays (K > 2), is su-
perior to the current state of the art both in terms of accuracy and
computational e�ciency, as we demonstrate in simulation.

Index Terms— Nested arrays, sparse arrays, blind calibration,
maximum likelihood, optimally-weighted least squares.

1. INTRODUCTION
Non-uniform linear sparse arrays, such as nested [1] and coprime [2]
arrays, are at the heart of the recently emerging and promising �eld
of sparse array signal processing [3–7]. With relatively simple geome-
tries, leading to the notion of virtual sensors, these sparse arrays enable
the detection ofO(N2) sources with onlyO(N) physical sensors [8].

While the related theory continues to rapidly evolve, including,
for instance, adapted Direction-of-Arrival (DOA) estimation meth-
ods [9] and related performance bounds [10], the problem of blind
calibration (e.g., [11]) has seen relatively less treatment in the litera-
ture thus far [12–15]. Contrary to array calibration using a known,
user-controlled source, blind calibration, in which even the number
of received sources is (possibly) unknown, is typically a more desir-
able, yet a more challenging task.

In this paper, we address the problem of blind calibration of
nested arrays comprised of two (collinear) Uniform Linear Arrays
(ULAs). In particular, we derive closed-form expressions of Least
Squares (LS) estimates, with approximate optimal weighting, of the
unknown gain and phase o�sets. Unlike previous methods, such
weighting enables to exploit latent characteristics of the joint statisti-
cal behavior of errors in the estimated covariance.

Our main contributions in this work are the following. First, we
show that the LS-based approach is in fact applicable to blind cali-
bration of nested arrays, despite recent contradicting claims in the lit-
erature [12]. We then derive Optimally-Weighted LS (OWLS) esti-
mates for joint estimation of the unknown sensors’ gains and phases,
exploiting cross-correlations between estimation errors in the respec-
tive gains and phases equations. Finally, we demonstrate that our so-

lution is not only more accurate than the current state of the art [14]
by Ramamohan et al., but is also more computationally e�cient by
orders of magnitude.

2. PROBLEM FORMULATION
Consider a general 2-level linear nested array with N1 and N2 sen-
sors in its �rst and second levels, resp., namely, with a total of N ,
N1 + N2 sensors. The �rst and second level ULAs have an inter-
element spacing of d and d̄ , L · d, resp., where1 L ∈ N. We as-
sume that the N sensors have unknown deterministic gain and phase
o�sets, which we denote asψ ∈ RN×1

+ and φ ∈ [−π, π)N×1, resp.
(ψn andφn are the unknown gain and phase o�sets of then-th sensor,
resp.). Further, we assume the presence of an unknown number M
of unknown, “far-�eld” narrowband sources, centered around some
common carrier frequency with wavelength λ.

The vector of sampled, baseband-converted signals from all N
sensors is given by

r(t)=ΨΦ
(
A(α)s(t) + v(t)

)
, ΨΦx(t) ∈ CN×1, ∀t ∈ [T ],

(1)
where [N ] denotes the set of integers {1, . . . , N} for anyN ∈ N, and

(i) Ψ , Diag(ψ) ∈ RN×N+ , Φ , Diag
(
eφ

)
∈ CN×N ;

(ii) s(t) , [s1(t) · · · sM (t)]T ∈ CM×1 denotes the sources, orig-
inating from unknown anglesα , [α1 · · · αM ]T ∈ RM×1;

(iii) A(α) , [a(α1) · · · a(αM )] ∈ CN×M denotes the nomi-
nal array manifold matrix, with the steering vectorsa(αm) as its
columns, de�ned elementwise as an(αm) , e

2π
λ
d·in cos(αm)

for all n ∈ [N ],m ∈ [M ], with the indexing function

in ,

®
n− 1, n ∈ [N1]

N1 + (n− 1−N1)L, (n−N1) ∈ [N2]
;

(iv) v(t) ∈ CN×1 denotes additive ambient noise or “interfering”
signals, modeled as spatially and temporally independent, iden-
tically distributed (i.i.d.) zero-mean circular Complex Normal
(CN) [16] with a covariance matrix Rv , E

[
v(t)v(t)H

]
=

σ2
vIN , where σ2

v is unknown; and
(v) x(t) denotes the signal that would have been received in the ab-

sence of gain or phase o�sets, namely with Ψ = Φ = IN .
We also assume that the sources are mutually uncorrelated. Par-

ticularly, s(t) is modeled as a (temporally) i.i.d. zero-mean circular
CN vector process with an unknown diagonal covariance matrix
Rs , E

[
s(t)s(t)H

]
. However, we note that the CN assumption

1Usually,L = N1+1, as originally proposed by Pal and Vaidyanathan [1].
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can be relaxed while retaining most of the results obtained through-
out this paper. Additionally, we assume s(t) and v(t) are statistically
independent. As a consequence,

r(t) ∼ CN (0N ,R) , ∀t ∈ [T ], (2)
where
R , E

î
r(t)r(t)H

ó
= ΨΦCΦ∗Ψ ∈ CN×N , (3)

C,E
î
x(t)x(t)H

ó
=A(α)RsAH(α) + σ2

vIN ∈ CN×N , (4)

and we have used ΨH = Ψ and ΦH = Φ∗.
The problem at hand can now be formulated as follows. Given the

measurements{r(t)}Tt=1 whose (identical) distribution is prescribed by
(2), estimate the unknown deterministic parameters {ψ,φ}.

Before proceeding to the solution approach, we also note that our
proposed method can be modi�ed and be applied to a more general
signal model,

rw(t) = r(t) +w(t), (5)

where w(t) denotes a spatially and temporally white additive noise
vector, statistically independent of r(t), which is una�ected by the
gain and phase o�setsψ,φ. This possible additional noise term usu-
ally accounts for internal (e.g., thermal) receiver noise. Details regard-
ing the required modi�cations can be found in [17], Subsection IV.

3. BLIND CALIBRATION BY JOINT OWLS
First, observe that, given an upper bound on the number of sources
M , an optimal solution to our problem would be obtained by joint
Maximum Likelihood (ML) estimation of ψ and φ, together with
the nuisance parameters σ2

v,M,α and the diagonal elements ofRs,
which yields e�cient estimates ([18]) ofψ,φ. However, since:

1 M is unknown, which necessitates solving a preliminary
model order selection problem (e.g., [19–21]);

2 Given M , the derivation of the likelihood equations for this
model is rather involved, which, at any rate, leads to a non-
convex, high dimensional optimization problem; and

3 The su�cient statistic in this model is the sample covariance
matrix of the data “R , 1

T

∑T
t=1 r(t)r(t)H ∈ CM×M ,

we resort to OWLS estimation of ψ,φ based only on “R. This ap-
proach leads to computationally simple estimates, obtained by solv-
ing a linear system of equations, and enables to harness much (if not
all) of the information encapsulated in the second-order statistics.

3.1. The Partially-Toeplitz Structure of the Covariance Matrix
Due to the speci�c structure of a nested array, the covariance matrixC
in (4) has a special structure, which, through the relation toR in (3),
gives rise to a linear system of equations in a concise set of unknowns
when applying an element-wise log transformation to R. This sub-
section focuses on establishing these linear relations, which, to the
best of our knowledge, are presented in the literature for the �rst time
for nested arrays in here, and serve as the primary contribution of this
paper. Subsection 3.2 is then devoted to the approximately optimal
extraction (estimation) ofψ andφ from these linear relations.

We begin by recalling the well-known fact that the array mani-
fold matrix of a ULA is a Vandermonde matrix (e.g., [22]). Thus,
when all the signals involved are uncorrelated, the covariance matrix
of a (perfectly calibrated) ULA is a Toeplitz matrix (e.g., [23]). Since a
2-level linear nested array is a concatenation of two ULAs, its covari-
ance matrix C contains two “overlapping” Toeplitz matrices on its
block diagonal. Speci�cally, the matrices C(1) ∈ C(N1+1)×(N1+1)

andC(2) ∈ CN2×N2 , de�ned by

C
(1)
ij , Cij , c

(1)

|i−j|+1, ∀i, j ∈ [N1 + 1],

C
(2)
ij , C(i+N1)(j+N1) , c

(2)

|i−j|+1, ∀i, j ∈ [N2],

are both Hermitian, positive-de�nite Toeplitz matrices, where c(1) ∈
C(N1+1)×1 and c(2) ∈ CN2×1 are their associated underlying
“Toeplitz-generating” vectors, resp. Note further that, by de�nition,

C
(1)

(N1+1)(N1+1) ≡ C
(2)
11 ∈ R+ =⇒ c

(1)
1 ≡ c(2)1 ∈ R+, (6)

therefore these matrices share (/“overlap” in) a single element. This
can be intuitively explained by the fact that the (N1 + 1)-th sensor
can be regarded either as the last element of the 1st (N1 + 1)-element
ULA, or as the 1st element of the 2nd N2-element ULA. Further, let
us denote the upper right block of C, which corresponds to the re-
maining cross-covariance elements between signals received by sen-
sors from the �rst and second levels, as ‹C ∈ CN1×(N2−1), with‹Cij , Ci(j+N1+1), ∀i ∈ [N1],∀j ∈ [N2 − 1].

Based on (3), usingRij = Cijψiψj · e(φi−φj), we have for

log (Rij) , µij +  · νij , (7)
the following relations: (for (9), we assume |φn| � π,∀n ∈ [N ])
µij = <{log (Rij)} = <{log (Cij)}+ log(ψi) + log(ψj), (8)
νij = ={log (Rij)} = ={log (Cij)}+ φi − φj , (9)

for any pair of indices i ≤ j ∈ [N ]. More speci�cally, using the
Toeplitz structure ofC(1) andC(2), and the de�nitions

ρ(1) ,<{log(c(1))}, ρ(2) ,<{log(c(2))}, ‹P ,<{log(‹C)},

ι(1) ,={log(c(1))}, ι(2) ,={log(c(2))}, Ĩ ,={log(‹C)},

as well as ψ̃n, log(ψn) (where log(·) operates elementwise), we have

µij =ψ̃i + ψ̃j +


ρ
(1)

|i−j|+1, i, j ∈ [N1 + 1]

ρ
(2)

|i−j|+1, (i−N1), (j −N1) ∈ [N2]‹Pij , i ∈ [N1], N1 + 2 ≤ j ≤ N
, (10)

νij =φi − φj +


ι
(1)

|i−j|+1, i, j ∈ [N1 + 1]

ι
(2)

|i−j|+1, (i−N1), (j −N1) ∈ [N2]

Ĩij , i ∈ [N1], N1 + 2 ≤ j ≤ N
. (11)

It is readily seen from (10)–(11) that, collecting all the non-
redundant2 terms {µij , νij} into a vector y ∈ RN

2×1, namely
0.5N(N + 1) values of µij for i, j ∈ [N ] with i ≤ j, and
0.5N(N − 1) values of νij for i, j ∈ [N ] with i < j, one can
construct a system of linear equations

y = Hθ, (12)

where θ ,
[‹ψT

φT θTnuisance

]T
∈ RKθ×1 is the the vector of un-

knowns,Kθ , 4N + 2N1(N2 − 1) + 2,

θnuisance ,
[
ρ(1)T ι(1)

T
ρ(2)T ι(2)

T
vec
Ä‹P äT vec

Ä
Ĩ
äT]T

,

andH is the matrix of coe�cients determined by (10)–(11). Due to
space limitations, and considering it is rather technical and straight-
forward, we omit the explicit de�nition ofH (see [17], Appendix A,

2Due to the conjugate symmetry log(R) = log(RH) = log(R)H.



(a) 1 2
First level

3 4 5 6 7 8
Second level

9 10 11 12
(b) 1 2 3 4 5 6 7 8 9 10

Fig. 1: 2-level nested array with N1 = N2 = 3 and d = 1. (a) Conventional
design: L = N1+1, does not enable LS-based blind calibration. (b) Proposed
design: L = N1, enables LS-based blind calibration. Filled bullets represent
sensors, while empty bullets represent spaces (absence of a sensors).

for similar principles regarding the construction ofH).
Assuming Kθ ≤ N2, although (12) has N2 equations and only

Kθ unknowns, it can be veri�ed that H is not full-rank. Indeed,
from (6) we have the degeneracies ρ(2)1 = ρ

(1)
1 , as well as ι(1)1 =

ι
(2)
1 = 0. Moreover, similarly as with ULAs, identi�ability of ψ,φ

in this blind scenario requires one gain and two phase references [24].
Hence, w.l.o.g. we may set ψ̃1 = φ1 = φ2 = 0. We can now elimi-
nate these six parameters from θ, together with the six corresponding
columns ofH , maintaining (12) with the newly de�ned θ ∈ RKθ×1

andH ∈ RN
2×Kθ , only nowKθ = 4N + 2N1(N2 − 1)− 4.

Yet, even after eliminating these degenerate variables, the rank of
H is equal toKθ−1. More precisely, since the gain-related equations
stemming from (10) are decoupled from the phase-related equations
stemming from (11), it can be shown that (at least) one additional
equation is required only for the unique determination of the phases
(and not for the gains). Indeed, for a conventional 2-level nested ar-
ray with L = N1 + 1, illustrated in Fig. 1a for N1 = 3, Han et al.
[12] already pointed out that “there are not enough equations, as in
the ULA case, to estimate the phase errors”. Nevertheless, the claim
that “the least squares method becomes inapplicable” ([12], Subsec-
tion IV-B) is not entirely accurate, as shown next.

Consider the case where N1 = N2 = L, as illustrated in Fig. 1b
forN1 = 3. Contrary to the conventional choiceL = N1+1, which
does not allow for LS-based blind calibration of the array, with L =
N1 the situation is di�erent, and LS-based blind calibration is in fact
possible. To see this, observe that if we eliminate the 2nd toN1-th ele-
ments of the array, we are left with a ULA with d̄ = N1·d. This means
that if we eliminate the respective (2nd to N1-th) rows and columns
ofC, we are left with a Toeplitz matrix, whose lower-rightN2 ×N2

block isC(2). It follows that all elements ofC(2) are replicated ver-
sions of some of the elements of the 1st row ofC, thus ρ(2) and ι(2)
can be eliminated fromθ, together with their corresponding columns
inH (modifying columns corresponding to the other elements of θ
accordingly), which is now full-rank, hence (12) has a unique solu-
tion. Nevertheless, it is still possible to detect O(N2) sources using
onlyO(N) sensors with a calibrated array. Indeed, it is easily veri�ed
that the maximum central contiguous ULA segment ([2], Section II,
de�nition 2) is of cardinality 2N2

1 + 1 = O(N2), which directly
determines the maximum number of detectable sources (see [2], and
reference therein). Moreover, the degradation in this respect relative
to what can be achieved byL = N1 + 1 is quite marginal. Thus, sub-
ject to this marginal cost, we derived a system of linear equations with
a unique solution, serving as the underlying “transformed” model for
estimation of θ, which includesψ andφ, based only on “R.

We further note that if the number of detectable sources is of
greater importance than the fully blind calibration ability, the results
of Subsection 3.2 can also be used withL = N1 +1 by adding (only)
one extra (third) phase reference to resolve the rank de�ciency ofH .

3.2. Joint OWLS of the Sensors’ Gains and Phases O�stes
The transformed linear model (12) enables estimation of ψ (via ‹ψ)
andφ, both extracted from θ, by replacing the unknown elements of

y, namely {µij , νij}, with their estimates {µ̂ij , ν̂ij}, extracted from“R. Indeed, theoretically, “R can be made arbitrarily close toR by in-
creasing the sample size T . However, in practice, the available sam-
ple size is always limited and is oftentimes �xed. Therefore, rather
than relying on the coarse approximation “R ≈ R, which leads to the
coarse, sub-optimal ordinary LS estimate, we propose a more re�ned
analysis, which takes into account the estimation errors in “R and ex-
ploits (some of) their approximated statistical properties for obtain-
ing a more accurate estimate of θ.

Formally, for any �nite sample size T , we have“R , R+ E =⇒ “Rij = Rij + Eij , ∀i, j ∈ [N ],

where {Eij} denote the errors in estimating {Rij}. Hence, replacing
Rij with “Rij in (7) yields

log
Ä“Rijä , µ̂ij +  · ν̂ij = log (Rij) +

,ζij︷ ︸︸ ︷
log

Å
1 +
Eij
Rij

ã
, (µij + εij) +  · (νij + εij),

for all i, j ∈ [N ], where ζij is the transformed complex-valued “mea-
surement noise”, with εij and εij as its real and imaginary parts, resp.
Consequently, we now have the following exact linear relations®

µ̂ij = µij + εij

ν̂ij = νij + εij
=⇒ yξ , y+ξ = Hθ+ξ ∈ RN

2×1, (13)

where yξ is de�ned exactly as y, only with {µ̂ij , ν̂ij} replacing
{µij , νij}, and the “noise” vector ξ ,

[
εT εT

]T consists of the
respective 0.5N(N + 1) elements of the µ̂ij -related noise εij in ε,
and of the 0.5N(N − 1) elements of the ν̂ij -related noise εij in ε.

Despite a previous claim in the literature that “the estimation of
phase errors is independent of gain errors” ([25], Subsection III-B),
we have recently shown that although the “noiseless” equations (8)–
(9) are deterministically decoupled, the “noisy” equations (left-hand
side of (13)) are in fact statistically coupled. That is, the noise terms
{εij} and {εij} are correlated, meaning that more accurate estimates
would be obtained by jointly estimating all the unknowns, including‹ψ,φ, together, via a widely linear estimate (e.g., [26]) based on all
the complex measurements {“Rij} (forming yξ), and a uni�ed, full
analysis of the transformed noise {ζij}.

From the celebrated Gauss-Markov theorem [27], the Best Linear
Unbiased Estimate (BLUE) of θ given yξ is the OWLS estimate

θ̂OWLS ,
Ä
HTΛ−1

ξ H
ä−1

HTΛ−1
ξ

(
yξ − ηξ

)
,

where ηξ , E [ξ] and Λξ , E
î(
ξ − ηξ

) (
ξ − ηξ

)Tó are the mean
and covariance matrix of ξ, resp. The BLUE attains the minimal at-
tainable MSE matrix among all linear unbiased estimates. When ξ
is Gaussian (which is true asymptotically in our case from the MLE
properties [27]), θ̂OWLS is also the MLE of θ based on yξ , which is
e�cient [18], hence it is also the uniformly minimum-variance unbi-
ased estimate ([27]) of θ based on yξ .

In [17], addressing blind calibration of ULAs, we showed that

ηξ ≈ −
1

T
· 0.5 ·

î
1T
0.5N(N+1) 0T

0.5N(N−1)

óT
, η̂ξ, (14)

for a su�ciently largeT , such that |Eij | � |Rij | for all possible (i, j).
As for the covariance matrix of ξ, which also reads Λξ = E

[
ξξT

]
−



(a)

(b)
Fig. 2: Average MSEs of“ψ and φ̂ (a) vs.T , at SNR=10[dB], and (b) vs. SNR,
with T =2 · 103. The considerable performance improvement is evident.

ηξη
T
ξ , we have further shown in [17] that for all i, j, k, ` ∈ [N ],

E [εij · εk`] ≈
1

T
· 0.5 · <

ß
RikR

∗
j`

RijR∗k`
+
Ri`R

∗
jk

RijRk`

™
, (15)

E [εij · εk`] ≈
1

T
· 0.5 · <

ß
RikR

∗
j`

RijR∗k`
−
Ri`R

∗
jk

RijRk`

™
, (16)

E [εij · εk`] ≈
1

T
· 0.5 · =

ß
Ri`R

∗
jk

RijRk`
−
RikR

∗
j`

RijR∗k`

™
, (17)

under the same asymptotic regime, so that Λξ approximately depends
onR only. For the full derivation of (14)–(17), see [17], Appendix B.
Remarks:

1 For a large enough T , (14)–(17) hold for any �xed SNR; and
2 It is evident from (17) that εij , εk` are generally dependent.

Of course, the true R is in fact unknown. However, since “R is
the MLE ofR, by virtue of the invariance property of the MLE [28],
it follows that “Λξ , a matrix whose elements are computed by (14)–
(17), but with {“Rij} replacing {Rij}, is approximately the MLE of
Λξ . Therefore, we propose the “ML-based OWLS” estimate

θ̂ML-OWLS ,
(
HT“Λ−1

ξ H
)−1

HT“Λ−1

ξ

(
yξ − η̂ξ

)
, (18)

from which the ML-based OWLS estimates of the gains and phasesÄ
ψ̂n
ä

ML-OWLS
= exp

ÅÄ
θ̂n
ä

ML-OWLS

ã
, ∀n ∈ [N − 1],Ä

φ̂n
ä

ML-OWLS
=
Ä
θ̂N−1+n

ä
ML-OWLS

, ∀n ∈ [N − 2],

are readily extracted (recall ψ̃1 = 0 ⇒ ψ1 = 1 and φ1 = φ2 = 0).
Invoking the continuous mapping theorem [29] and the consistency
of the MLE [30] “Λξ , for a su�ciently large T : θ̂ML-OWLS ≈ θ̂OWLS.

The potential phase wrapping problem—possibly corrupting the
linear relation (9) via a modulo operation—can be mitigated using
the same method described3 in [31], Subsection 3.2.

4. SIMULATION RESULTS
We consider model (1) with N1 = N2 = L = 4, i.e., N = 8
sensors, d = λ/2, and M = 15 unit-variance sources impinging

3Omitted from this paper due to lack of space.

Fig. 3: DOAs estimates average RMSEs for the post-calibration SS-MUSIC
estimates (a) vs. T , at SNR = 10[dB], and (b) vs. SNR, with T = 2000.
Clearly, the enhanced calibration enables higher accuracy in DOA estimation.

Average Runtime,N = 8
ML-OWLS SDP
0.0032[sec] 1.616[sec]

Table 1: Average runtime of the two methods forN=8. Our method achieves
higher accuracy, while reducing execution time by orders of magnitude.

from angles α located uniformly on [20◦, 70◦]. The sensors’ gains
and phases were �xed to ψ = [1 1.3 1.1 0.7 2.2 0.9 1.2 0.8]T

and φ = [0◦ 0◦ 5◦ 11◦ −8◦ 3◦ −7◦ 9◦]T, resp., with ψ1, φ1 and
φ2 as known references (w.l.o.g.). Empirical results were obtained by
averaging 103 independent trials.

Fig. 2 presents the average MSEs obtained by “ψML-OWLS and
φ̂ML-OWLS. For comparison, we also show the MSEs obtained by
Ramamohan et al.’s Semide�nite Programming-based (SDP) es-
timates [14], which were demonstrated as superior to the STLS
method [12]. Evidently, our proposed estimates provide consider-
ably improved calibration relative to SDP. Table 1 shows the average
runtime (in [sec], on an Intel i7 CPU at 2.7[GHz]) in this setup for
the two calibration methods under consideration. Since the core com-
putation of our method boils down to a closed-form (non-iterative)
formula (18), it is substantially more computationally e�cient.

Next, we turn to evaluate the resulting accuracy in DOAs es-
timation. We consider the same setup, only now with M = 3

sources, α = [33◦ 45◦ 57◦]T, and we assume M is known (or,
was successfully detected [19–21]). Fig. 3 presents the average Root
MSE (RMSE) of all the DOAs estimates {α̂m}3m=1, obtained using
Spatial Smoothing MUSIC (SS-MUSIC, e.g., [32]) vs. T , for �xed
SNR = 10[dB], and vs. the SNR, for �xed T = 2 · 103. As ex-
pected, due to the calibration improvement, the accuracy in DOAs
estimation is improved as well.

5. CONCLUSION
We presented a blind calibration scheme for 2-level nested arrays.
Based on the partially-Toeplitz structure of the observations’ nominal
covariance matrix, and building upon our recent results for statisti-
cally enhanced blind calibration of ULAs, we derived the ML-OWLS
estimates of the gain and phase o�sets, which were shown to be su-
perior, both in terms of estimation accuracy and of computational
complexity, to the recently proposed SDP-based method. Our im-
proved calibration leads to enhanced accuracy in DOAs estimation,
which was also demonstrated in simulations.

We note in passing that the proposed calibration scheme may also
be used for non-Gaussian signals and still achieve a signi�cant perfor-
mance improvement with analytical guarantees3. Moreover, the con-
cepts presented here for 2-level nesting can be extended to K-levels,
K > 2. These extensions will be presented in future work.
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