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ABSTRACT

Class imbalance is an important factor that affects the per-
formance of deep learning models used for remote sensing
scene classification. In this paper, we propose a random fine-
tuning meta metric learning model (RF-MML) to address
this problem. Derived from episodic training in meta met-
ric learning, a novel strategy is proposed to train the model,
which consists of two phases, i.e., random episodic train-
ing and all classes fine-tuning. By introducing randomness
into the episodic training and integrating it with fine-tuning
for all classes, the few-shot meta-learning paradigm can be
successfully applied to class imbalanced data to improve the
classification performance. Experiments are conducted to
demonstrate the effectiveness of the proposed model on class
imbalanced datasets, and the results show the superiority of
our model, as compared with other state-of-the-art methods.

Index Terms— Remote sensing, scene classification,
class imbalance, meta-learning, metric learning

1. INTRODUCTION

Scene image analysis is an important research topic in the
field of remote sensing. Recently, as the amount of accessible
remote sensing image data increases substantially, advanced
scene image analysis, e.g., scene classification, has attracted
increasing research interests. Remote sensing scene classifi-
cation aims to mark aerial images automatically with specific
semantic categories, which is a fundamental problem in un-
derstanding high-resolution remote sensing images [1].
Recently, deep learning methods have been applied to ad-
dress scene classification problems in remote sensing with
promising performance [2, 3]. The training datasets used in
these methods are generated by human annotations, hence, in
theory, a balanced distribution can be enforced for each class
[4, 5, 6]. In practice, however, due to the difficulty in data ac-
quisition, scene images are usually unbalanced across classes.
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Using such data can lead to poor performance on the minority
classes [7].

Despite of its significance, little research has been con-
ducted to address this problem. However, several existing
ideas for other applications can be related to this problem.
For example, the re-sampling based methods [7, 8] aim to en-
sure equal distribution of each class, by down-sampling the
majority classes or over-sampling the minority classes. In
the re-weighting based method [9], additional weights are ap-
plied in the loss function for each class with inverse class fre-
quency. The re-sampling based methods can lose informa-
tion on the majority classes or quickly over-fit the minority
classes, whereas the re-weighting based methods can allevi-
ate such problem only to some extent.

The impact of class imbalance on the result using con-
volutional neural networks (CNNs) has been studied in [10],
where the number of training samples is adjusted according to
scene complexity which can be limited when only few sam-
ples are available in minority classes. In the work [11], a
competence estimation and selection method is designed for
scenes with multi-source heterogeneous data, and to improve
the performance of the data fusion system with the presence
of class imbalance. However, the effectiveness of those meth-
ods is still limited for highly imbalanced data [12].

In this paper, we propose a random fine-tuning meta met-
ric learning model (RF-MML) to address the class imbal-
anced problem for aerial scene classification. Meta metric
learning [13, 14] is originally proposed to solve the few-shot
learning problem, which learns from abundant training ex-
amples in the base classes to recognize novel classes with a
limited amount of labeled examples. Inspired by this, our RF-
MML can learn generalized knowledge from data-rich ma-
jority classes, and transfer it to data-poor minority classes.
However, directly employing this paradigm to the class im-
balanced classification will encounter catastrophic forgetting
problem (i.e., forgetting the initial categories on which it was
trained) [15], thus leading to poor performance on the major-
ity classes. Hence, in our work, a new training procedure con-
sists of two phases is introduced to improve the meta model’s
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Fig. 1. Framework of the proposed metric based meta-learning model, where the training procedure includes two phases:
random episodic training and all classes fine-tuning. Here, query samples are embedded and classified in the same way in both
phases. fy4 is an embedding model, and g denotes a metric based linear classier.

performance. Firstly, random episodic training on majority
classes is implemented to learn generalized knowledge across
data distribution. Then, all classes are fine-tuned to further
improve the performance for multi-category classification. A
number of experiments are performed on class imbalanced
datasets to demonstrate the improved performance of our pro-
posed model as compared with other state-of-the-art methods.

The remainder of the paper is organized as follows: Sec-
tion 2 presents the proposed method in details; Section 3
shows the experimental results; and Section 4 summarizes
the paper and draws the conclusion.

2. METHODOLOGY

In this section, our proposed RF-MML is introduced, which
consists of a feature embedding network f, and a metric
based linear classifier g, where ¢ denotes the learnable pa-
rameters of the network. The overall framework and training
procedure are given in Fig. 1. In this model, a novel meta-
learning procedure is introduced for model training, which
includes two phases: random episodic training (RET) and all
classes fine-tuning (ACF). The details are given as follows.

2.1. Random Episodic Training

Motivated by episode-based meta-learning [13, 14], we in-
troduce a novel random episodic training strategy for model
training. Different from [13, 14], where the form of episodes
is fixed along training, our RET can randomly generate dif-
ferent forms for each episode, hence can improve the gener-
alization across different multi-class classification.

For aerial scene classification, assume a highly imbal-
anced training set D" = {(x;,y;)}_;, where z; denotes
an aerial scene image and with its corresponding label y;. The

overall set of categories is denoted as Ct"¥" Here, we divide
Ct" into two subsets: C™% and C™", where C™% con-
tains sufficient samples in each class, whereas C™i" contains
very limited samples in each class.

In RET, the model is trained by K-ways, N-shot classi-
fication tasks 7; on C™%  where K is the number of classes,
and N denotes the number of training samples in each class.
Rather than being fixed as in [13, 14], K is generated from
a range of [2,|C™%|] and N is generated from a range of
[1, N™a%) where |C™%| is the number of elements in class
set C™%  and N™%* denotes the number of samples available
in minority classes. After K and N are generated, we ran-
domly select K classes from C™% to construct the class set
C’. Then, N samples are selected from each class in C?. As
a result, we can obtain a support set D7"“"P"" with N x K
samples, defined as

Dt — {(z, ) =1,--- ,N x K,y, €C'} (1)

In addition, the query set D{““"¥ can be constructed by M
samples selected from Ct, as:

D;_zuery = {(xnayn”n: 17 7M7yn ecz} (2)

After that, both D;“*P°"* and DI"“" are mapped into fea-
ture space by an embedding network f,. Finally, the query
embedding features are classified by a metric based linear
classier g according to support embeddings. The loss is cal-
culated from the results of classification score, and fy4 is op-
timized by backpropagation. The details of the loss and opti-
mization will be given in Sec.2.3.

2.2. All Classes Fine-Tuning

To further improve the performance for class imbalanced
data, a novel training phase named all classes fine-tuning is



integrated with the meta-learning paradigm. Episodic train-
ing is performed on all categories once RET is finished, as a
result, the model is adapted to the specific multi-classes clas-
sification task without forgetting the initial majority classes
and thus achieves better results.

Here in ACF, the embedding network f is trained episod-
ically by all categories in C*"*". More specifically, the em-
bedding network f is trained in K-ways /N-shot classifica-
tion tasks, where the K is fixed to [C!"*"| and N is randomly
generated in the range of [1, N™%%). As for the query set,
we select the same number of samples from each category to
form a balanced query set. The loss calculation and model
optimization are the same as that in RET.

2.3. Linear Classifier and Loss Function

In our proposed model, the embedding network fy4 can in-
corporate any derivable metric based linear classifiers, such
as nearest class prototype [14] and support vector machines
(SVMs) [16]. Here, to demonstrate the validation of our
model, we choose nearest class prototype as our linear classier
g for its easy computation, which can be performed by com-
puting the distances between prototype representations of
each class in metric space.

Nearest class prototype first computes a prototype cj of

each class Cj, in the support set Df“PPm‘t’ as
1
k= 1CH > folm) 3)
F (zi,y:)€Ck

Then, the prediction score pyg of each query sample on each
category can be obtained by the following equation:

bl — exp (—d (fy(x),cr))
Po(y = klz) > ow exp (—d (fo(x), cpr))

where d(-,-) denotes the Euclidean distance. The learning
procedure is implemented by minimizing the negative log-
probability J(¢) of the ground true class k via backpropa-
gation, where the loss J(¢) can be formulated as follows:

J(¢) = —logpy(y = klz) ®)

When the linear classifier during training and testing are both
nearest class prototype, the proposed model is named as RF-
MML-Proto. Note that g can be replaced by other linear clas-
sifiers, for comparison purpose, we also explore the perfor-
mance of SVMs during testing. Thus, another model named
RF-MML-SVM is introduced, which is trained by the near-
est class prototype, but tested with SVMs.

“

3. EXPERIMENTS AND RESULTS

3.1. Dataset

We evaluate the proposed model on both AID [5] and NWPU-
RESISC45 [6]. The AID has a number of 10,000 images

within 30 classes, the numbers of sample images in each class
varies from 220 up to 420, while the NWPU-RESISC45 has
45 classes with 700 samples in each class. For AID, we first
randomly select 50% samples from each class as training set,
and then select 100 samples from the rest for each class to
construct a balanced testing set. The remaining part is used
as the validation set. As for NWPU-RESISC45, in each class,
140 samples are selected as the training set, 400 samples as
the testing set and the rest is used for validation.

To verify the effectiveness of our model for class imbal-
anced classification, the training set is divided into two sub-
sets according the number of samples within each class: ma-
jority classes and minority classes. Here, each minority class
contains only a small number of samples (i.e., s = 5 and
s = 10), while the number of training samples in majority
classes stays the same. We select 10 and 15 classes to con-
struct the minority classes for AID and NWPU-RESISC45
respectively. Note that, the number of samples for minority
classes is manually setup, so that we can obtain class imbal-
anced training sets.

3.2. Implementation Details

Network Architecture We use Wide ResNet-50 (WResNet50)
[17] pre-trained on ImageNet as the backbone of our network
architecture. For our proposed model, all the layers before the
last global average are used as the architecture of f,, while
for other baseline deep learning methods, we replace the last
1000 dimensional fully connected (FC) layer of WResNet50
by a |C'"*"| dimensional FC layer.

Training Setup The model is trained with 80,000 episodes
for RET and 2000 episodes for ACF, where Adam optimizer
is employed with a learning rate of 5 x 10~ in RET, and
1 x 107% in ACF. Other baseline deep learning methods are
trained by Adam optimizer with a 5 x 10~° learning rate by
500 epochs, the learning rate is divided by 5 for every 200
epochs. We use the validation set to select the model with the
best accuracy.

3.3. Experimental Results

Performance Comparison We first conduct experiments to
compare the performance of our proposed methods, i.e., RF-
MML-Proto and RF-MML-SVM, with other state-of-the-art
methods. Here, the baseline model (Plain) is WResNet50 [17]
without employing any strategy for class imbalanced prob-
lem. The results are given in Table 1. As can be seen from Ta-
ble 1, both RE-MML-Proto and RF-MML-SVM can improve
the performance on minority classes. Although the recogni-
tion accuracy on majority classes has a moderate drop, the
overall performance is improved. What’s more, the fewer the
number of training samples in minority classes, the more im-
provement of our proposed model can achieve.

To further show the effectiveness of our proposed model,
the confusion matrix obtained by RF-MML-SVM on AID is



Table 1: Performance comparison in terms of classification accuracy. Each training set is divided into majority and minority
classes according to the number of training samples. s denotes the number of training samples in each class.

AID: |C™ai| = 20, [C™in| = 10

NWPU-RESISC45: [C™ai| = 30, |C™i"| = 15

Methods Majority ~ Minority Majority ~ Minority . Majority ~ Minority . Majority ~ Minority )
s>100 s=10 Overall s> 100 s=5 Overall s—140 s=10 Overall s — 140 s=5 Overall
Plain [17] 94.75%  48.60%  79.37% 94.85%  37.00%  75.57% 89.46%  50.75%  76.56% 90.96%  30.38%  70.77%
ReWeight [9] 93.35% 56.70%  81.13% 91.75%  47.80%  77.10% 89.07%  55.62%  77.92% 86.41%  39.10%  70.64%
ReSample [8] 93.50%  50.60%  79.20% 93.10%  40.30%  75.50% 90.04%  50.73%  76.94% 88.67%  32.52%  69.95%
RF-MML-Proto (Ours)  92.15%  63.20%  82.50% 90.80% 54.50% 78.67% 87.52% 61.49% 78.73% 86.13% 50.24% 74.11%
RF-MML-SVM (Ours)  92.15%  62.70% 82.33% 91.80% 53.09%  78.99% 88.31% 63.86% 80.80% 87.87%  50.99%  75.51%
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Fig. 2: Confusion matrix obtained by RF-MML-SVM on AID
testing set. The range of minority class is between 10 and 19,
which contain only 10 training samples in each class. For a
clearer presentation, we have integrated the first 10 majority
categories into class 0.

illustrated in Fig. 2. The recognition accuracy comparison
for each class of RF-MML-SVM and ReWeight [9] is shown
in Fig. 3, which details the classification accuracy improve-
ment of RF-MML-SVM relative to ReWeight in each class.
As shown in Fig. 2 and Fig. 3, although the improvement
of the overall recognition accuracy is limited, the proposed
model can achieve a higher recognition accuracy on the mi-
nority categories.

Ablation Study To show the effectiveness of both RET and
ACF, an ablation study is conducted on NWPU-RESISC45,
where 15 minority classes with 10 samples in each class are
manually created. The results are given in Table 2, here the
baseline method denotes the model that is trained without
RET and ACF, which is exactly same as ProtoNet in [14]. RF-
MML-Proto/w/R denotes the proposed model without using
RET, and RF-MML-Proto/w/F denotes the proposed model
without using ACF. As can be seen from Table 2, both train-
ing strategies are effective, and the combination can further
improve the model’s performance and achieve the best classi-
fication result for class imbalanced data.

Fig. 3: Precision comparison for each class of the RF-MML-
SVM and the ReWeight method. Where the Y-axis denotes
per class classification accuracy improvement of RF-MML-
SVM relative to the ReWeight, and the X-axis denotes the
class index of each category.

Table 2: Ablation Study on NWPU-RESISC45

Methods Majority Minority  Overall
Baseline(ProtoNet) [14]  79.23%  60.67%  72.85%
RF-MML-Proto/w/R 83.40%  61.39% 76.11%
RF-MML-Proto/w/F 79.29%  64.14%  74.18%
RF-MML-Proto 87.52%  61.49%  T78.73%

4. CONCLUSION

We have presented a metric based meta-learning model and
a new training procedure to deal with the class imbalance in
aerial scene classification. With a slight performance drop
on the majority classes, our proposed model can greatly im-
prove the recognition accuracy on the minority classes and
finally improve the overall performance. Such improvement
is approximately proportional to the degree of class imbal-
ance. Both RET and ACF can improve the performance of
meta-learning paradigm in class imbalanced classification.
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