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ABSTRACT

A brain-computer interface (BCI) is used not only to con-
trol external devices for healthy people but also to rehabili-
tate motor functions for motor-disabled patients. Decoding
movement intention is one of the most significant aspects for
performing arm movement tasks using brain signals. Decod-
ing movement execution (ME) from electroencephalogram
(EEG) signals have shown high performance in previous
works, however movement imagination (MI) paradigm-based
intention decoding has so far failed to achieve sufficient ac-
curacy. In this study, we focused on a robust MI decoding
method with transfer learning for the ME and MI paradigm.
We acquired EEG data related to arm reaching for 3D direc-
tions. We proposed a BCI-transfer learning method based on
a Relation network (BTRN) architecture. Decoding perfor-
mances showed the highest performance compared to con-
ventional works. We confirmed the possibility of the BTRN
architecture to contribute to continuous decoding of MI using
ME datasets.

Index Terms— Brain-computer interface (BCI), Elec-
troencephalogram (EEG), Transfer learning, Movement imag-
ination and execution

1. INTRODUCTION

Brain-computer interfaces (BCI) can be used as commu-
nication systems that translate the user’s intentions into
commands to control external devices. BCI technology has
adapted assisted devices [1], to rehabilitate a functional re-
covery for spinal cord injury (SCI) and stroke patients, while
also providing support in multiple tasks encountered in daily
life [2, 3]. Electroencephalogram (EEG) is one of the non-
invasive methods to obtain brain signals, and is commonly
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used to construct an effective BCI system due to the high
temporal resolution and low cost. Movement imagination
(MI) paradigm has endogenous characteristics because it
does not need an external stimulus to perform the given task
[4]. Therefore, it could be adopted for a more intuitive brain-
to-robot interaction compared to other BCI paradigms [5].
However, recent MI studies have not achieved sufficient de-
coding performance. The performance of the MI task often
increases participant’s fatigue, and it is difficult to determine
which movement is exactly imagined. In contrast, a move-
ment execution (ME) task is easier to perform and actually
uses the same limbs, making the brain signal more consistent.
Additionally, acquired signals during the ME task showed a
stronger amplitude characteristics compared to MI task [6].

Therefore, in this study, we adopted the principle of
transfer learning for a robust MI decoding using the ME
task dataset as a supporting tool. Recent studies proposed ad-
vanced decoding methods based on deep learning and transfer
learning for successful decoding of user-intuitive intention.
Samek et al. [7] proposed a method for transferring non-
stationary information between subjects, which effectively
narrows the gap between training data and test data. Azab et
al. [8] applied transfer learning in the classification domain,
which maintained classification performance even when there
were few subject-specific trials available for training. Fahimi
et al. [9] performed inter-subject transfer learning methods
on a classification domain for an end-to-end deep CNN help
to decode the attentional information from time-series. Tan
et al. [10] presented an attention-based transfer learning
method, applying it to the EEG classification domain. They
also proposed EEG optical flow and deep transfer learning
that is appropriate for transferring knowledge through joint
training [11]. Giles et al. [12] proposed a subject-to-subject
transfer learning framework. They suggested a new measure-
ment named the Jensen Shannon Ratio (JSR) that is used to
compare calibration trials with existing data sets for transfer
learning.

In this paper, we focused on the decoding of the various
types of upper extremity movements from EEG signals. Es-
pecially, arm reaching tasks in multiple directions, which are
important since it is how any kind of upper extremity move-
ment starts. In order to decode various upper limb move-
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ments, we acquired EEG data using six arm reaching tasks
(left, right, forward, backward, up and down) for real and
imaginary movements. We proposed BCI-transfer learning
based on the Relation network (BTRN) using the MI and ME
paradigm for robust decoding of various upper limb move-
ments. Using the ME paradigm can reduce participant fa-
tigue and have more consistent and robust signal character-
istics than using the MI paradigm. Therefore, using the real
movement can be applied as an advantage to replace a part
of the MI paradigm. To the best of our knowledge, this is
the first attempt to applying transfer learning for EEG data of
high-complexity tasks. We demonstrated the possibility of the
BTRN architecture to contribute in decoding an MI paradigm
using ME datasets.

2. EXPERIMENTS

2.1. Participants

Nine healthy and right-handed participants (4 females and 5
males, 22-27 years) were recruited for the experiment. None
of them had prior knowledge of BCI experiments. Before the
start of the experiment, we explained the entire experimen-
tal protocols to all participants. The protocols and environ-
ments were reviewed and approved by the Institutional Re-
view Board at Korea University [1040548-KU-IRB-17-172-
A-2].

2.2. Experimental protocol

Participants sat comfortably in chairs, with visual displays in
front of them. The experiment comprised of two sessions: an
executive session and an imaging session. Participants were
asked to perform the arm reaching tasks for six different di-
rections (left, right, forward, backward, up and down), respec-
tively (Fig. 1). The order of tasks were cued randomly. In the
motor execution session, participants performed real move-
ments of arm reaching tasks according to the visual cue. For
the imagination session, they imagine the shown task with-
out any movement. The experiment paradigm consists of
three seconds of rest, three seconds of visual instruction and
four seconds of ME or MI tasks. We recorded 300 trials for
each session and 50 trials per directions. We recorded EEG
signals with 60 electrodes, reference and ground channels
were placed on FCz channel and Fpz according to the interna-
tional 10/20 system respectively. EEG signals were recorded
with the ActiCap system, BrainAmp amplifiers (Brain Prod-
uct GmbH, Germany) and a MatLab 2018a software.

3. METHODOLOGY

3.1. Data preprocessing

The acquired EEG signals were down-sampled from 1000 Hz
to 250 Hz. A bandpass filtering of 4-40 Hz was applied us-
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Fig. 1. Experimental protocols for arm reaching tasks. (a)
horizontal direction and (b) vertical direction

ing a zero phase, fifth-order Butterworth filter. Also common
average referencing (CAR) based spatial filtering to enhance
signal quality was used. We analyzed three seconds of data
in each ME and MI session. We segmented the entire filtered
signals into 80% training data and 20% test data, respectively.
We selected and analyzed only 25 channels (F3, F1, Fz, F2,
F4, FC3, FC1, FCz, FC4, C3, C1, Cz, C2, C4, CP3, CP1,
CPz, CP2, CP4, P3, P1, Pz, P2 and P4). Channels located in
the prefrontal sides were not used to avoid artifacts caused by
eye movement [13]. Channels in temporal and occipital areas
were also not used because they are known to be related to
sound and visual inspection [14].

3.2. BCI-Transfer learning method based on Relation
Network (BTRN)

We propose a BTRN architecture that classifies various upper
limb movements using both ME and MI datasets (Fig. 2). We
utilize a Relation network with a Siamese network in order to
apply transfer learning to the MI classification.

3.2.1. Relation network

Relation networks have been used to classify new classes by
calculating the relationship score between the query image
and the new class [15]. These approaches do not update the
network in order to properly classify even small datasets. The
fundamental problem of EEG signals in the BCI paradigm is
that the data aquisition process is difficult and complex. In
general, MI-based BCI collects MI data as well as ME data,
however the later one is not used during classification. There-
fore, if we can use ME data properly, the traditional BCI
problem will be alleviated. Firstly, ME and MI dataset are
fed into the Siamese network to obtain the same size of fea-
tures over the same encoders. The obtained features coming
from the same encoder are then concatenated, thereby dou-
bling the features. Through this, we comprise the features of
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Fig. 2. Overall flowchart of the proposed BTRN architecture using MI and ME dataset

the MI and ME dataset. The Relation network receives the
concatenated features as input and conducts convolutions to
calculate the similarities between representative ME features
and the unlabeled MI features. Using these similarities, the
Relation network generates a relation scores. In the last layer,
the softmax function scales the relation scores from 0 to 1
for classification. Additionally, we applied average pooling
that smoothly interpolates between common pooling opera-
tors. Details on the Siamese network are described in in sec-
tion 3.2.2.

3.2.2. Siamese network

We used transfer learning with the Siamese network for ob-
taining the features of the ME and MI dataset. Because this
network is trained with two identical encoders, the features of
the ME and MI dataset can be updated together. Basically, the
Siamese network is intended to learn better features for clas-
sification [16, 17]. In this study, two identical 3D convolution
neural network (CNN) architectures are constructed. This ar-
chitecture considers temporal, spatial and spectral features of
brain signals. We rearrange input data from two dimensions
(time × channel) to three dimensions (channel × channel ×
time), in order to have a relation between spatial character-
istics and channel position [18]. The 3DCNN encoders are
comprised of two main layers, a Conv3D and average pool-
ing layer, to reduce the data significantly. We use both ME
data and MI data as inputs for the encoders by concatenating
each output feature to construct the data. Since a 3DCNN
is used for feature extraction, the output of the network con-
tains features from a combination of ME data and MI data.

The output features are sent into the relation network to cal-
culate the relation scores based on similarities. The encoders
share the parameters and weights, therefore the encoders ex-
tract features that are more suitable for finding similarities as
the training progresses.

4. RESULTS AND DISCUSSION

Table 1 indicates the classification accuracies for the arm
reaching tasks for all participants using the proposed BTRN.
In the horizontal plane, the grand-averaged classification re-
sults over all subjects achieved an accuracy of 0.46 (±0.02)
using the combined data (ME and MI data) and 0.45 (±0.05)
using just MI data. Also, in the vertical plane, the proposed
model achieved an accuracy on both datasetes of 0.46 (±0.01)
and 0.45 (±0.04) respectively. The performance of classifica-
tion in each data was above chance level (0.25). As a result,
we showed that using the combined data can provide similar
classification performance as using MI data.

Classification comparison performances using common
spatial pattern (CSP) and linear discriminant analysis (LDA)
[19], DeepConv [20], EEGNet [21], and proposed BTRN ar-
chitecture are presented in Table 2. Performance indicates the
grand-averaged classification accuracy over all participants.
In the horizontal plane, the proposed BTRN architecture has
the highest classification accuracies (combined: 0.46, MI:
0.45) while CSP+LDA model showed the lowest (combined:
0.31, MI: 0.30). Similarly, in the vertical plane, the highest
class accuracies were 0.46 and 0.45 in combined and MI
respectively using the BTRN architecture, while the low-
est result was 0.29 and 0.33 in each of the datasets using



Table 1. Classification accuracies of arm reaching task ac-
cording to proposed BTRN architecture

Subjects
4-class (horizontal plane) 4-class (vertical plane)

ME+MI MI ME+MI MI

sub1 0.45 0.42 0.47 0.45

sub2 0.42 0.45 0.45 0.40

sub3 0.50 0.57 0.44 0.42

sub4 0.47 0.40 0.45 0.52

sub5 0.48 0.50 0.50 0.47

sub6 0.45 0.45 0.45 0.42

sub7 0.45 0.37 0.45 0.50

sub8 0.45 0.47 0.47 0.42

sub9 0.47 0.45 0.45 0.45

Average 0.46 0.45 0.46 0.45
Std. 0.02 0.05 0.01 0.04

Table 2. Comparison performances using the BTRN and the
conventional methods

Methods
4-class (horizontal plane) 4-class (vertical plane)

ME+MI MI ME+MI MI

CSP+LDA [19] 0.31 (±0.04) 0.30 (±0.04) 0.29 (±0.03) 0.33 (±0.04)

DeepConv [20] 0.31 (±0.03) 0.36 (±0.03) 0.34 (±0.07) 0.34 (±0.05)

EEGNet [21] 0.33 (±0.05) 0.35 (±0.04) 0.35 (±0.06) 0.34 (±0.04)

BTRN 0.46 (±0.02) 0.45 (±0.05) 0.46 (±0.01) 0.45 (±0.04)

CSP+LDA. This result proves that the BTRN is more robust
than other conventional models when performing multiclass-
classification.

Fig. 3 shows the confusion matrices of each class for
a representative participant sub3 and sub1 in the combined
dataset. In the horizontal plane task, classification accuracy
was 0.50 but the true positive value for ‘right’ class was 0.42.
However, in vertical plane, ‘left’ class had the lowest value
(0.42). We also observed that the matrix in vertical plane is
mainly confused between ‘left’ and ’right’ classes. The high-
est results in horizontal and vertical planes were in ‘back-
ward’ and ‘down’ class, respectively. The results show that
there is a performance difference for each class, but it is con-
firmed that there is no large variation between sessions. Thus,
this result demonstrates that it is possible to decode various
reaching movements from the same limb in the vertical and
horizontal planes.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed BTRN architecture and obtained
higher multiclass-classification accuracies compared to con-
ventional models. We proved that the feasibility of robust
decoding six different arm movements using ME and MI data
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Fig. 3. Confusion matrices of each class for the representative
subjects, respectively. (a) horizontal plane for sub3 and (b)
vertical plane for sub1

for transfer learning. Using the ME paradigm can be replaced
by some of the MI paradigm and is more consistent in subject
and EEG signals. Thus, we demonstrated that BTRN archi-
tecture is relatively effective for decoding multiple movement
intention from EEG signals. Future work will be to develop
robust decoding methods based on deep learning to overcome
problems with small EEG dataset.
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