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ABSTRACT

In hybrid HMM based speech recognition, LSTM language
models have been widely applied and achieved large improve-
ments. The theoretical capability of modeling any unlimited
context suggests that no recombination should be applied in
decoding. This motivates to reconsider full summation over
the HMM-state sequences instead of Viterbi approximation
in decoding. We explore the potential gain from more accu-
rate probabilities in terms of decision making and apply the
full-sum decoding with a modified prefix-tree search frame-
work. The proposed full-sum decoding is evaluated on both
Switchboard and Librispeech corpora. Different models us-
ing CE and sMBR training criteria are used. Additionally,
both MAP and confusion network decoding as approximated
variants of general Bayes decision rule are evaluated. Con-
sistent improvements over strong baselines are achieved in
almost all cases without extra cost. We also discuss tuning
effort, efficiency and some limitations of full-sum decoding.

Index Terms— speech recognition, full-sum decoding,
hybrid HMM, LSTM language models

1. INTRODUCTION & RELATED WORK

Language models (LM) based on long short-term memory
(LSTM) neural networks [1] have been widely applied to au-
tomatic speech recognition. Both in lattice rescoring [2, 3]
and direct one-pass recognition [4, 5, 6], large improvements
over the n-gram count-based language models are observed.
The recurrent update of cell states on each new word allows
theoretically a capability of modeling any unlimited context.

One of the most common neural-network-based acous-
tic modeling methods is the hybrid hidden Markov model
(HMM) approach [7], which still gives state-of-the-art per-
formance on several widely used corpora [5, 6]. The joint
probability of a word sequence and input features requires a
full summation over all HMM-state sequences. This leads to
a high search complexity, since no exact word boundaries are
present and all word sequences have to be tracked separately.
However, with n-gram LM, the LM probability for paths shar-
ing the same n-gram context is anyway the same. A complex-

ity reduction based on this property is required. Viterbi ap-
proximation instead of full-sum is then widely applied, where
the selection of the best word sequence hypothesis is only de-
rived from its single best HMM state sequence. This allows
an independent treatment on each state path of each word se-
quence. Additionally, exact word boundaries of each path are
revealed. Recombination based on the same n-gram context
can then be applied to largely simplify the search.

But due to the unlimited context with LSTM LM, search
is forced to again track each word sequence separately even in
Viterbi decoding. Although recombination can be forced by
taking a truncated context, certain performance degradation
is observed [4, 8]. This gives the motivation to reconsider
the full-sum over HMM state sequences, where potential im-
provements of using better probability in decision making can
be explored.

Full-sum-based training criteria, such as connectionist
temporal classification (CTC) [9], have been widely adopted
to improve model training. But even for models trained with
full-sum related criteria, Viterbi decoding is still one standard
approach for evaluation [10, 11]. One related work can be the
prefix search decoding proposed in [9], where certain heuris-
tics are used to apply a section-wise full-sum search. This is
claimed to outperform the best path decoding. [12] extended
it to subword level without the heuristics. Overall, there is
only limited work to investigate full-sum-based decoding and
its effect on decision making.

In this work, we revisit the joint probability used in de-
coding of hybrid HMM-based speech recognition. We ar-
gue that by applying full-sum instead of Viterbi approxima-
tion, improved probabilities should also benefit decision mak-
ing. We apply the full-sum decoding using prefix-tree search
with some modification. The proposed full-sum decoding is
evaluated on both Switchboard and Librispeech corpora us-
ing state-of-the-art systems. Different models using cross-
entropy (CE) and lattice-based state-level minimum Bayes
risk (sMBR) [13] training criteria are used. Additionally, both
maximum a posteriori (MAP) and confusion network (CN)
decoding as approximated variants of general Bayes decision
rule are evaluated. Consistent improvements over the strong
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baselines are achieved in almost all cases. We also discuss
tuning effort, efficiency and some limitations of the full-sum
decoding.

2. FULL-SUM DECODING

Let wN
1 and xT1 denote a word sequence of length N and in-

put features of T frames, respectively. In the hybrid HMM
approach, the key quantity used for decision making is their
joint probability:

p(wN
1 , x

T
1 ) = p(wN

1 ) ·
∑
sT1

p(sT1 , x
T
1 |wN

1 )

= p(wN
1 ) ·

∑
sT1

T∏
t=1

p(xt, st|st−1)

= p(wN
1 ) ·

∑
sT1

T∏
t=1

p(st|xt)
p(st)

· p(st|st−1) (1)

= p(wN
1 ) ·max

sT1

T∏
t=1

p(st|xt)
p(st)

· p(st|st−1)

(Viterbi approximation)

(2)

where sT1 represents HMM-state sequences modeling the
word sequence wN

1 . By applying Viterbi approximation, this
joint probability for each word sequence is quantified by its
single best state sequence only. Except for the numerical loss,
the effect of such approximation in terms of final decision on
best word sequence is unclear.

2.1. Decision rules

In speech recognition, the general Bayes decision rule is given
by:

xT1 →
∗
wN

1 = argmin
wN

1

∑
ŵM

1

p(ŵM
1 |xT1 ) · L(wN

1 , ŵ
M
1 )

where L is the cost function between two word sequences.
Instead of Levenshtein distance, the sentence-level 0-1 cost
function is often used to simplify the optimization. This leads
to the MAP decision rule:

xT1 →
∗
wN

1 = argmax
wN

1

p(wN
1 |xT1 ) = argmax

wN
1

p(wN
1 , x

T
1 )

Here differences of using Equation 1 and Equation 2 may re-
sult in both better and worse recognition.

The MAP decision rule aims to minimize the expected
sentence error rate, which is suboptimal for speech recogni-
tion. A thorough study on different cost functions in terms of
word error rate (WER) is given in [14, 15], but experimental
verification is done using Equation 2. Decision rules other
than MAP usually include further summations (e.g. for word

posteriors), which can have possible interaction with the sum-
mation on HMM-level. Thus, the impact of full-sum on the
decision becomes even more complicated.

We also investigate this with CN decoding, which is a
common approach to better approximate the Bayes decision
rule. We follow the pivot-arc-based approach in [16] to con-
struct the CN by clustering the word arcs in the lattice into
slots. The resulting hypotheses space is a superset of the orig-
inal one and all paths have the same length. In this case,
Hamming distance can be directly used as the cost function
and the optimization problem is converted to slot-wise local
decisions:

xT1 →
∗
wn = argmax

wn

∑
ŵN

1 :ŵn=wn

p(ŵN
1 |xT1 )

Here the posterior probability is obtained by normalizing the
joint probability over all word sequences in the word lattice.

2.2. Prefix-tree search

For large vocabulary continuous speech recognition (LVCSR),
explicit enumeration of all possible word sequences is com-
putationally infeasible. Prefix-tree search using dynamic
programming (DP) [17] is a very efficient procedure to han-
dle this. We also apply full-sum decoding using this approach
with some modification. Without recombination, all state
paths are characterized by their complete word history and
probability summation within each word sequence becomes
feasible. This is mainly realized by modifying the auxiliary
Q function in DP recursion:

Q∑(t, s;wn
1 ) =

∑
s′

{p(xt, s|s′;wn
1 ) ·Q(t− 1, s′;wn

1 )}

At each target state of each time frame, the probability sum-
mation over all incoming paths is carried out and this merged
path continues further in the search. Paths of pronunciation
variants are normalized and summed up as well. Note that
without recombination, this does not increase complexity
comparing to Viterbi decoding, since the major difference is
just replacing the maximization with summation. The rest of
the search procedure is rather straightforward.

Standard score-based beam pruning is applied to maintain
a reasonable size of search space. Ideally an infinite pruning
threshold is needed to include all state paths of each word
sequence, but we observe that the summation saturates at a
normal threshold already. By increasing the pruning thresh-
old, the number of paths grow dramatically. But the contri-
bution of those paths with very low probability is negligible,
and eventually has no effect on the results. For each final
word sequence hypothesis, the joint probability in Equation 1
contains the full-sum over all plausible state sequences.

Note that the resulting lattice from the full-sum decoding
is a tree-like structure with certain approximation. Within
each word sequence, word boundaries of each arc are taken



from the single best state path. We use score to represent
probabilities by taking −log(.), which is common in de-
coding. The score at each arc boundary is computed from
the probability summation of all partial paths merged at this
boundary. The score marked on each word arc is the score
difference between its right and left boundary, which does
not correspond to the probability of this word. However, the
accumulated score from the first till the last arc corresponds
to the correct probability summation of all state paths for this
word sequence. During CN construction, word boundaries
are used as part of the arc distance measure for clustering and
discarded afterwards. The correct full-sum is used to compute
the posteriors for arc clustering and decision making.

2.3. Parameter tuning

In practice, acoustic scale α and LM scale β are often applied
for an optimal weighting among the knowledge sources. For
MAP Viterbi decoding, α can be set to 1 and only β needs
to be tuned. But for full-sum decoding, both of them need
to be tuned. This great tuning effort can be largely reduced
by firstly tuning β with α set to 1, and then linearly scaling
both of them with the fixed ratio. To our experience, the same
optimum is achieved in most cases as obtained by grid search.

3. EXPERIMENTS

3.1. Experimental settings

The proposed full-sum decoding is implemented based on the
RWTH ASR toolkit [18] with extensions described in [4].
Both MAP and CN as approximated variants of Bayes de-
cision rule are evaluated. For the MAP results, a one-pass
recognition setup using LSTM LM without recombination is
applied. Word lattices generated from the one-pass recog-
nition are used to further apply CN decoding. Additionally,
different models trained with CE and lattice-based sMBR cri-
teria are evaluated. Note that full-sum is not applied in the
training. Experiments are conducted on both the Switchboard
corpus [19] and the Librispeech corpus [20]. Acoustic and
LM scales are optimized on the development sets.

3.2. Switchboard

The acoustic models are the same as described in [11, 6],
which consists of six BLSTM layers with 500 units for each
direction. Both the CE and sMBR based models are trained
on 300h Switchboard-1 Release 2 using 40-dimensional gam-
matone features [21]. The language model consists of two
LSTM layers with 1024 units, which is described in [4]. The
Hub5’00 and Hub5’01 datasets are used as development and
test set, respectively.

Table 1 compares the proposed full-sum decoding to the
standard Viterbi decoding with different models and decision
rules. Only one case is improved with MAP decision rule,

Table 1. WER (in %) comparison of full-sum and Viterbi
decoding with different models and decision rules on the
Hub5’00 and Hub5’01 datasets

Model Decision Decoding Hub5’00 Hub5’01

CE
MAP Viterbi 12.2 12.2

full-sum 12.2 12.2

CN Viterbi 12.4 12.4
full-sum 12.1 12.2

sMBR
MAP Viterbi 11.7 11.5

full-sum 11.6 11.5

CN Viterbi 11.7 11.5
full-sum 11.4 11.3
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Fig. 1. WER vs RTF comparison between Viterbi and full-sum
decoding using the sMBR model and MAP decision rule on
Hub5’00 dataset. (LSTM LM scoring is executed on a Nvidia
Geforce 1080Ti GPU, and the rest of decoding is done on an
Intel Xeon CPU E5-2620v4@2.1GHz.)

but consistent improvements are obtained with CN for both
models. Interestingly for the CE model, the performance of
Viterbi decoding even degrades from MAP to CN, which is
not the case for full-sum decoding.

Figure 1 shows efficiency comparison of the two decod-
ings with the sMBR model and MAP decision rule on the
Hub5’00 dataset. Smaller real time factor (RTF) is obtained
with stronger pruning. Full-sum decoding is more sensitive to
strong pruning. This is because, besides direct search errors
made by the strong pruning, it also suffers from an indirect
influence. During search with strong pruning, non-negligible
state paths of a partial word sequence hypothesis get pruned
away, which introduces certain loss to the probability summa-
tion. This effect can accumulate across the search and even-
tually leads to more search errors. On the other hand, when
WER converges with less pruning, there is no efficiency loss
with the full-sum decoding.



Table 2. WER (in %) comparison of full-sum and Viterbi decoding with different models and decision rules on the Librispeech
datasets

Model Decision Decoding dev-clean dev-other test-clean test-other

CE
MAP Viterbi 2.4 5.8 2.8 6.3

full-sum 2.4 5.7 2.8 6.2

CN Viterbi 2.4 5.7 2.8 6.1
full-sum 2.4 5.6 2.8 6.0

sMBR
MAP Viterbi 2.2 5.1 2.6 5.5

full-sum 2.1 5.0 2.5 5.4

CN Viterbi 2.2 5.0 2.6 5.4
full-sum 2.1 4.8 2.5 5.3
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Fig. 2. Average accumulated state posteriors of models’ top
1-5 outputs at each frame on the Librispeech dev datasets. CE
and sMBR denote the training criteria of the two models.

3.3. Librispeech

We use the state-of-the-art hybrid HMM system described in
[5]. Both CE and sMBR based acoustic models consist of
six BLSTM layers with 1000 units for each direction, and are
trained on the complete Librispeech training data with 50-
dimensional gammatone features. The language model has
two LSTM layers with 4096 units.

Detailed WER comparison of the two decodings with dif-
ferent models and decision rules are shown in Table 2. With
such a strong baseline of very low WER, further improve-
ments are obtained with the full-sum decoding in almost all
scenarios. This again verifies the benefit of improved proba-
bilities in terms of decision making. Note that there is no dif-
ference in the models but just a different way to apply them
in decoding, therefore the improvements come without addi-
tional cost at training.

One interesting observation is that more improvements
are achieved on the ’other’ datasets than the ’clean’ ones. To
better understand this, we further check the state posteriors
from acoustic models’ top 5 outputs at each frame. We accu-
mulate these posteriors at each frame and average them within
each dev set for each model, which is shown in Figure 2. This
partially reflects the models’ distribution over the states and

both models tend to produce sharper distribution on the dev-
clean set than on the dev-other set. One way to interpret this
is that when the models are more confident on a very limited
number of state paths, there is likely less difference between
full-sum and Viterbi decoding.

4. CONCLUSION

In this paper, we showed that by applying full-sum instead
of Viterbi approximation in decoding, more accurate proba-
bilities improve decision making. The proposed full-sum de-
coding was verified on different corpora, models and deci-
sion rules, and showed consistent improvements in almost all
cases. We showed that the full-sum decoding is more sensi-
tive to strong pruning, but has no efficiency loss with normal
pruning. One major advantage is that by applying the pro-
posed full-sum decoding, even for the state-of-the-art system
with very low WER, further improvements can be achieved
with negligible extra cost.

One possible future direction is to investigate the effect
of full-sum decoding in noisy conditions where models are
in general less confident. Another direction is to investigate
the joint effect on models trained with full-sum-based training
criteria, such as CTC.
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mann Ney, “Lattice Decoding and Rescoring with Long-
span Neural Network Language Models,” INTERSPEECH, pp.
661–665, 2014.

[3] Shankar Kumar, Michael Nirschl, Daniel N. Holtmann-Rice,
Hank Liao, Ananda Theertha Suresh, and Felix X. Yu, “Lattice
Rescoring Strategies for Long Short Term Memory Language
Models in Speech Recognition,” ASRU, pp. 165–172, 2017.

[4] Eugen Beck, Wei Zhou, Ralf Schlüter, and Her-
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[8] Jorge Javier, Giménez Adrià, Iranzo-Sánchez Javier, Civera
Jorge, Sanchis Albert, and Juan Alfons, “Real-time One-pass
Decoder for Speech Recognition Using LSTM Language Mod-
els,” INTERSPEECH, pp. 3820–3824, 2019.

[9] Alex Graves, Santiago Fernández, Faustino J. Gomez, and
Jürgen Schmidhuber, “Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with Recurrent Neural
Networks,” in ICML, 2006, vol. 148, pp. 369–376.

[10] Naoyuki Kanda, Xugang Lu, and Hisashi Kawai, “Maximum
A Posteriori Based Decoding for CTC Acoustic Models,” in
INTERSPEECH, 2016, pp. 1868–1872.

[11] Wilfried Michel, Ralf Schlüter, and Hermann Ney, “Compar-
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