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ABSTRACT

Consider an Internet-of-Things (IoT) system that monitors a
number of multi-valued events through multiple sensors shar-
ing the same bandwidth. Each sensor measures data corre-
lated to one or more events, and communicates to the fusion
center at a base station using grant-free random access when-
ever the corresponding event is active. The base station aims
at detecting the active events, and, for each active event, to
determine a scalar value describing each active event’s state.
A conventional solution based on Separate Source-Channel
(SSC) coding would use a separate codebook for each sen-
sor and decode the sensors’ transmitted packets at the base
station in order to subsequently carry out events’ detection.
In contrast, this paper considers a potentially more efficient
solution based on Joint Source-Channel (JSC) coding via a
non-orthogonal generalization of Type-Based Multiple Ac-
cess (TBMA). Accordingly, all sensors measuring the same
event share the same codebook (with non-orthogonal code-
words), and the base station directly detects the events’ values
without first performing individual decoding for each sensor.
A novel Bayesian message-passing detection scheme is de-
veloped for the proposed TBMA-based protocol, and its per-
formance is compared to conventional solutions.

Index Terms— Type-Based Multiple Access, approx-
imate message passing, IoT, random access, joint source-
channel coding.

1. INTRODUCTION

Motivation: In the context of the Internet of Things (IoT),
massive machine-type communications (mMTC) refers to
communication set-ups in which a large number of IoT de-
vices, such as sensors, communicate sporadically with a
single receiver by transmitting short messages. The design
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Fig. 1: Event-driven random access: A wireless sensor net-
work monitors M independent events, with each event m be-
ing either inactive (ξm = 0) or active with some associated
scalar state value ξm ∈ {1, ..., R}. Each sensor k ∈ Gm
measuring a given event produces a local estimate φm(Xk) ∈
{0, 1, ..., R} based on measurement Xk. Local estimates are
conveyed to the fusion center for joint events’ detection.

of mMTC communication protocols is challenged by the in-
adequacy of the conventional multiple-access channel (MAC)
model that has provided the theoretical underpinning for the
study of uplink transmission strategies. In fact, unlike the
standard MAC model, mMTC systems are typically charac-
terized by: (i) small payloads [1]; (ii) uncoordinated access,
possibly with grant-less or grant-free data transmission [2];
(iii) sparse user activity, with number of active users possibly
exceeding the overall message blocklength [3]; (iv) correlated
event-driven transmissions; and (v) fusion-based decoding,
whereby functions of multiple IoT sensors’ measurements,
rather than individual measurements, are of interest to the
receiver. In this work, we propose a transmission protocol
that accounts for all these aspects, allowing for grant-free
uncoordinated short-packet transmissions of correlated mea-
surements.
Context and related work: The problem of designing and
analyzing mMTC protocols is currently being studied both
from a fundamental information-theoretic standpoint and in
terms of algorithms and protocols. Information-theoretic
studies have focused mostly on the so-called many-user and
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unsourced random access models. In the many-user set-up,
the number of users, which may be random, increases pro-
portionally to the blocklength [3]. This is in contrast to the
standard large-system analysis of multiuser systems in which
the blocklength is let to go to infinity before the number of
users is made arbitrarily large [4]. In the unsourced random
access model, users employ the same codebook, and the prob-
lem is identifying transmitted codewords, irrespective of the
identity of the sender [5]. Grant-free random access trans-
mission protocols are under intense investigation, including
in standardization bodies [2], with most work focusing on
aspects (i)-(iii) listed above (see [2] for a review).

Potential efficiency gains arising from consideration of
correlated data generation (iv) and fusion-based decoding
(v) have been addressed in past activity on sensor networks.
Among the most notable results of this line of research, Type-
Based Multiple Access (TBMA) is a transmission protocol
that implements a form of Joint Source-Channel (JSC) cod-
ing, whereby each measurement value is assigned an orthogo-
nal codeword and the receiver infers the parameter of interest
from the histogram of the received measurements [6–8]. Re-
cently, TBMA has been studied in a multi-cell set-up for IoT
applications under centralized or decentralized decoding [9].

Contributions: In this paper, we propose a grant-free ran-
dom access scheme that builds on JSC coding via a novel
non-orthogonal variant of TBMA. The method applies to a
general multi-event setting. The non-orthogonality of code-
words assigned to different measurement values makes stan-
dard decoders used in prior work on TBMA suboptimal and
inefficient. To obviate this problem, we introduce a Bayesian
Approximate Message Passing (AMP) detector [10] that
jointly infers the events’ activity and related scalar param-
eters (see also [11] for a review of related uses of AMP in
random access).

2. EVENT-BASED RANDOM ACCESS FOR IOT:
SYSTEM MODEL AND CODING SCHEMES

Scenario and problem description: Consider the wireless
IoT network illustrated in Fig. 1, consisting of K devices
tasked with monitoring M “events“ and transmitting event-
related information to a centralized fusion center. Events
m = 1, ...,M are characterized by independent scalar ran-
dom variable ξm ∈ {0, 1, . . . , R}, with P (ξm = 0) = 1 − ρ
representing the probability that event m is inactive. When
the event is active, the event takes one of the values in the
set {1, . . . , R}, so that parameter R measures the amount of
information attached to the occurrence of an event.

Each device k can simultaneously monitor a subset of
events γ(k) ⊆ {1, ...,M}. Therefore, the devices can be par-
titioned into M , generally overlapping, groups Gm = {k ∈
{1, ...K} : m ∈ γ(k)}, for m = 1, . . . ,M , with group
Gm monitoring event m. Each device k performs a local

(real-valued) measurement Xk, which is generally correlated
with all the variables ξm for m ∈ γ(k). For each event
m ∈ γ(k), the local measurement Xk is mapped to a value
φm(Xk) ∈ {0, 1, . . . , R}, which represents a local estimate
of event m. Upon evaluating the local estimates φm(Xk)
for all m ∈ γ(k), device k maps each estimate φm(Xk) =
r ∈ {0, 1, . . . , R} into a codeword smk,r ∈ CN×1 of length
N complex symbols. Note that we assume no knowledge of
the channel coefficients at the devices. Codewords for each
device k and event m are selected from a given codebook
Smk = [smk,0, . . . , s

m
k,R] of generally non-orthogonal code-

words (columns). For future reference, we also define the
matrix Sk = [S1

k, . . . ,S
M
k ] that collects all codebooks of

device k. All codewords are subject to a power constraint
‖smk,r‖2 ≤ E.
Channel model: We assume time synchronization and trans-
mission over a block-fading channel model with coherence
time–frequency span no smaller than that occupied by the
codewords’ duration. The signal received at the fusion center
can hence be written as

y =
∑
k∈K

hk
∑

m∈γ(k)
smk,r +w, (1)

where hk is the channel coefficient for the link between device
k and the fusion center, and w is identical and independent
distributed (i.i.d.) complex Gaussian noise with zero mean
and variance σ2. To simplify (1), we define for each device k
the binary vector

xk = [(c1k)
T , . . . , (cMk )T ]T ∈ {0, 1}M(R+1)×1, (2)

where we have introduced the indicator vectors

cmk =

{
eφm(Xk) if m ∈ γ(k)
e0 otherwise.

(3)

In (3) er is an R+ 1-dimensional binary vector with a single
non-zero-entry at the (r+1)-th position. With this definition,
the received signal can be described in matrix-notation as

y =
∑
k∈K

hkSkxk +w (4)

= Ax̃+w, (5)

withA = [S1, . . . ,SK ] and x̃ = [h1x
T
1 , . . . , hKx

T
K ]T .

Separate vs joint source-channel coding: Depending on the
structure of the codebooks, we will distinguish between two
approaches. The conventional approach based on separate
source-channel coding (SSC) uses a distinct codebook Sk for
each device k. In contrast, with joint source-channel coding
(JSC), for any event m, all devices use a shared codebook
Smk = Sm = [sm0 , . . . , s

m
R ] for all k = 1, . . . ,K. As a re-

sult, all devices select the same codeword smr when producing
the same local estimate r for the m-th event. This approach



can be considered as a generalization of TBMA, given that the
latter assumes a single event (M = 1) and that theR+1 code-
words in Sm are orthogonal. In the next section, we discuss
receiver-side processing for both SSC and JSC. In all cases,
we assume no channel state information at the receiver.

3. RECEIVER PROCESSING FOR EVENT-BASED
RANDOM ACCESS FOR IOT: A BAYESIAN

FORMULATION

Standard decoding for TBMA is based on the assumption
that the codewords assigned to the (single) event are orthogo-
nal [6]. We propose here an AMP-based decoder that applies
for any choice of the codebooks, including the choices dis-
cussed above for SSC and JSC.
Graphical Model Representation: To this end, we start by
defining a factor graph that describes the joint distribution
of the variables introduced above. Given the mentioned as-
sumptions, the joint distribution pξ,x̃,y(·, ·, ·) of the relevant
variables (ξ, x̃,y) factorizes as

M∏
m=1

pξ(ξm)

K∏
k=1

px̃|ξ(x̃k|ξγ(k))
N∏
i=1

py|z(yi|zi), (6)

where the second term, given the definition of vector x̃, de-
scribes both the (deterministic) coding process and the fading
channel statistics, and we have defined zi = aTi x̃, with ai
being the i-th row of A. The factor graph of the joint distri-
bution (6) is illustrated in Fig. 2.
Bayesian Inference: Given the factorization (6), the detector
aims at computing the posterior distribution pξ|y(ξ|y) of the
events’ state vector ξ given the observation vector y. While
exact posterior inference is generally intractable, the Hybrid
AMP (H-AMP) algorithm proposed in [10] provides an effi-
cient solution with desirable empirical performance. H-AMP
operates by iteratively exchanging soft information between
two modules: the first carries out standard AMP by treating
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Fig. 2: Factor graph model representation of the relevant ran-
dom variables for the design of the H-AMP detector.

the entries of the vector x̃ as independent, while the second
refines the output of the first by leveraging the correlation
structure of the entries of vector x̃ in (6).

4. NUMERICAL RESULTS

In this section, we perform numerical analysis to compare the
performance of SSC and JSC in terms of decoding error as a
function of the following key system parameters: the number
M of observed events, the parameter R, the signature length
N , the number K of system devices, and the group {Gm}
partitioning of the devices.

Consider the special case in which each device observes
only one of the M = 24 events, with the same number of
devices observing each event. This results in a partitioning of
the device set into M non-overlapping groups {Gm}, each of
size G = K/M . The channel coefficients hk are modeled as
i.i.d. circularly-symmetric complex Gaussian with zero mean
and unit variance, hk ∼ CN (0, 1). We recall that they are
unknown to both devices and receiver. All codewords are
generated randomly, with i.i.d. circularly-symmetric com-
plex Gaussian entries with zero-mean and variance E/N ,
for which the convergence of AMP has been studied rigor-
ously [10]. The average signal-to-noise ratio (SNR) is defined
as SNR .

= E/σ2. The figure of merit is the average decoding
error rate, defined as

Error Rate .
=

1

M

M∑
m=1

Pr
{
ξm 6= ξ̂m | ξm

}
. (7)

Fig. 3 investigates the impact of the groups size G, i.e.,
of the number of devices configured to observe each of the
M events, on the decoding performance of SSC and JSC. We
set R = 1, so as to focus on the problem of events’ activity
detection. As G increases, the total number of devices K =
GM also grows proportionally. For both SSC and JSC, the
error rate is plotted as a function of G for different values
of N . It is observed SSC works well for small values of G,
but it is significantly impaired as the group size G increases
beyond a given value. This is because SSC assigns different
codewords to each device, and is hence able to support only a
maximum given number of devices in the group, for the given
value ofN , without causing a degradation of the error rate. In
contrast, JSC is able to leverage larger group sizes to decrease
the error rate below that achievable by SSC, particularly for
small values ofN . This is thanks to the fact that, with JSC, the
signals sent by all devices producing the same local estimate
of a given event are combined on air through the choice of
a common codebook. For example with N = 6, SSC can
achieve an error rate of at most 10−2 (for G = 2), while JSC
achieves an error rate of 2.6 ·10−3 for G = 16, and 2.4 ·10−4
for G = 256.

To gain more insight into this point, for the same set-up, in
Fig. 4, we directly investigate the impact of the number N of
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Fig. 3: Decoding error-rate for SSC and JSC as function of
the group size G, with the number N of channel uses as pa-
rameter. The number of events is M = 24, the cardinality of
the event-related variables is R = 1, probability of activation
ρ = 0.1 and SNR = 12 dB.
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Fig. 4: Decoding error-rate for SSC and JSC as function of the
codewords’ lengthN , with the cardinality of the event-related
variables as parameter. The number of events is M = 24, the
group size is G = 8, the activation probability is ρ = 0.1 and
SNR = 12 dB.

channel uses on the decoding error performance whenG = 8.
We vary here also the parameter R in order to consider the
more general case in which active events are characterized
by a scalar quantity of interest (of cardinality R). Here, we
consider the non-zero values of each event to be uniformly
distributed with probability ρ/R. In line with the discussion
above, we observe that JSC can vastly outperform SSC for
small values of N , here up to around N = 60. For larger
value of N , however, SSC can outperform JSC. This is due to
the fact that the on-air combination discussed above may be
destructive due to the lack of channel state information at the
devices (see also [6, 8] for analogous discussions on TBMA).

Finally, in Fig. 5, we evaluate the effect of the event ac-
tivation probability ρ on the decoding performance of SSC
and JSC for various values of the SNR. We set G = 8 and
R = 2. We observe that JSC outperforms SSC for larger
probabilities of event activation ρ for all SNR values. How-
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Fig. 5: Decoding error-rate for SSC and JSC as function of the
event activation rate ρ, with SNR as parameter. The number
of events is M = 24, the group size is G = 8, R = 2 and the
codeword length is N = 56.

ever, as the probability of event activation ρ decreases, and
as the SNR increases, we observe that SSC outperforms JSC.
The reason for this is again to be found in the advantages
and limitations of on-air non-coherent combining enabled by
JSC. As the probability of event activation decreases, SSC can
leverage the increased sparsity of the vector x (as given by
the SSC system model (4)) to overcome the combined effects
of interference and fading. In this regime, the performance
of SSC is essentially noise-limited, and the decoding perfor-
mance improves significantly with the increase of the SNR. In
contrast, with an increasing ρ the performance of JSC is ef-
fectively limited by the fading statistics due to the potentially
destructive on-air combining on shared codewords.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a grant-free random access
scheme that builds on joint source-channel (JSC) coding
via a novel non-orthogonal variant of Type-Based Multiple
Access (TBMA). The method applies to a general multi-event
setting and employs non-orthogonal codewords to improve
spectral efficiency. For the proposed TBMA-based protocol,
we developed a Bayesian message-passing detection scheme
that jointly infers the events’ activity and related scalar pa-
rameters. To evaluate the benefits of the proposed approach,
we performed numerical comparison with a solution based
on separate source-channel coding (SSC) under the same
Bayesian receiver processing framework. We observed that,
as compared to SSC, JSC is able to operate at smaller code-
word lengths, and hence at larger spectral efficiency values,
by taking advantage of larger group sizes through the over-
the-air combination of information from multiple devices.
For future work, it would be interesting to consider a gener-
alization of the approach to a multi-cell Fog-Radio Access
Network architecture, and to assess trade-offs between edge
and cloud processing [9].
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