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ABSTRACT

There are two sub-tasks implied in the weakly-supervised
SED: audio tagging and event boundary detection. Current
methods which combine multi-task learning with SED re-
quires annotations both for these two sub-tasks. Since there
are only annotations for audio tagging available in weakly-
supervised SED, we design multiple branches with different
learning purposes instead of pursuing multiple tasks. Similar
to multiple tasks, multiple different learning purposes can
also prevent the common feature which the multiple branches
share from overfitting to any one of the learning purposes.
We design these multiple different learning purposes based
on combinations of different MIL strategies and different
pooling methods. Experiments on the DCASE 2018 Task
4 dataset and the URBAN-SED dataset both show that our
method achieves competitive performance.

Index Terms— Sound event detection, weakly-labeled,
multi-branch learning, multi-task learning

1. INTRODUCTION

Sound event detection (SED) is a task that aims to detect
acoustic events in an audio recording. It not only judges
whether a specific sound event exists in the audio but also
estimates the onset and offset of the existing sound event.

Currently, due to the excellent performance of neural net-
works, most SED systems are based on neural networks [1, 2].
Especially, Phan et al. [3] and Xia et al. [4] propose meth-
ods for SED combining multi-task learning and neural net-
works, in which audio tagging and event boundary detection
are identified as two separate tasks. There are two kinds of
multi-task learning methods: hard parameter sharing and soft
parameter sharing multi-task learning. For the hard parameter
sharing methods, hidden layers are shared among multi-tasks
and specific output layers are kept for each task [5, 6]. As a
result, the feature representations generated by the shared hid-
den layers can be applied to the multiple tasks, which reduces
the risk of overfitting [6, 7]. Soft parameter sharing multi-
task learning regularizes the distance between the parameters
of each task, which makes the parameters of each task similar

[6]. The multi-task learning methods require labels for each
task to learn. Since most multi-task methods for SED regard
audio tagging and event boundary detection as two separate
tasks, strong labels containing the two following annotations
are required: occurrences of event categories in an audio clip
and the onset and offset of each event category. However, due
to the high cost of manual annotations [8], the strong labels
are difficult to obtain. As a result, weakly-supervised SED,
which utilizes weak annotations that only labeled with the
occurrences of event categories, has become a new research
focus.

Weakly-supervised SED is usually approached as a mul-
tiple instance learning (MIL) problem [9, 10]. According to
MIL, a bag of instances has only the bag-level label. Then
for weakly-supervised SED, an MIL strategy provides a way
to decide the clip-level prediction of an audio clip depending
on the frame-level information. The implementation of the
combination of MIL and neural networks relies on a feature
encoder and a pooling block. The feature encoder can be a
neural network such as CNN, RNN and CRNN. The pooling
block consists of a classifier and a pooling module which
adopts pooling methods such as global max pooling (GMP)
[11], global average pooling (GAP) [12], global weighted
rank pooling (GWRP) [13], attention pooling (ATP) [14, 15]
and so on. There are two types of MIL strategies [14]: the
instance-level approach and the embedding-level approach.
For the instance-level approach, the pooling module inte-
grates the frame-level probabilities output by the classifier
into a clip-level probability. For the embedding-level ap-
proach, the pooling module integrates the frame-level feature
representations output by the feature encoder into a clip-level
feature representation, which is passed through the classifier
to get the clip-level probability. As discussed in [14], the
embedding-level approach tends to outperform the instance-
level approach in terms of clip-level prediction. This is
because the different learning purposes implied in the dif-
ferent MIL strategies lead to different characteristics that the
feature serves. More specifically, the clip-level feature in the
embedding-level approach enables the feature encoder to gen-
erate high-level feature representations with more clip-level
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Table 1. The overview of the three pooling methods

Method Instance-level Embedding-level
GMP P̂(yc|x) = max

t
Pframe(yc|xt) he

c = max
t

xe
t

GAP P̂(yc|x) = 1
T

∑
t

Pframe(yc|xt) hc = 1
T

∑
t

xt

ATP P̂(yc|x) =
∑
t

actPframe(yc|xt) hc =
∑
t

act · xt

characteristics. On the contrary, the usage of the frame-level
feature in the instance-level approach leads to more frame-
level characteristics.

In this paper, we propose a multi-branch learning (MBL)
method which provides a way to combine multi-task learn-
ing with weakly-supervised SED. The structure of MBL con-
sists of a feature encoder and multiple branches. Different
branches employ the same high-level feature generated by
the feature encoder to predict the target. Similar to multi-
task learning, although all the branches of MBL predict the
same eventual target, they focus on different characteristics
of the common feature, which enables the common feature
to be fit for various learning purposes and reduces the risk
of overfitting single learning purpose. We design such two
different types of branches inspired by the different learn-
ing purposes between the embedding-level approach and the
instance-level approach. Further more, by considering dif-
ferent pooling methods, one type of the branches is imple-
mented as several auxiliary branches for training, while an-
other type of the branches is implemented as a main branch
both for training and detection. We regard the branch with the
embedding-level approach as the main branch and those with
the instance-level approach as auxiliary branches. Compared
to multi-task learning for SED, our approach only requires
weak labels. Experiments on both the DCASE 2018 Task 4
dataset and the URBAN-SED dataset show that the proposed
MBL achieves excellent performance.

2. THE MIL STRATEGIES FOR
WEAKLY-SUPERVISED SED

In this section, we introduce how 3 typical pooling methods
including global max pooling (GMP), global average pooling
(GAP) and attention pooling (ATP) are implemented with the
two MIL strategies (the embedding-level and instance-level
approaches).

Let x = {x1, ..., xT } be the high-level feature represen-
tations of an audio clip generated by the feature encoder, and
y = {y1, ..., yC}(yc ∈ {0, 1}) be the ground truths, where C
is the number of event categories.

For the instance-level approach, the high-level feature
representations are passed through the classifier to produce
frame-level probabilities Pframe(yc|xt), then the pooling
module integrates all the Pframe(yc|xt) into a clip-level

probability P̂(yc|x).

P̂(yc|x) = POOLING(Pframe(yc|x1), ...,Pframe(yc|xT ))
(1)

For the embedding-level approach, the pooling module
transforms the high-level feature representations into a con-
textual representation hc at first:

hc = POOLING(x1, x2, ..., xT ) (2)

Then the contextual representation is passed through the clas-
sifier to produce the clip-level probability:

P̂(yc|x) = Pclip(yc|hc) (3)

Table 1 illustrates the details of the implementation of the
3 pooling methods with these 2 MIL strategies. Here, hec in
the table represents the value of the eth dimension of hc, and
the weight act depends on trainable parameters wc:

act =
exp((wT

c xt)/d)∑
k

exp((wT
c xk)/d)

(4)

The hyper-parameter d in ATP is used to scale the weight dis-
tribution appropriately.

The probability of the tth-frame produced by the instance-
level approach is:

P̂(yc|xt) = Pframe(yc|xt) (5)

However, there is no frame-level probability produced
in the process of the embedding-level approach. To enable
frame-level detection, we pass the frame-level high-level
feature representations through the classifier to produce the
frame-level probabilities:

P̂(yc|xt) = Pclip(yc|xt) (6)

Besides, for ATP, rather than using Pclip(yc|xt), we uti-
lize the following frame-level probabilities:

P̂(yc|xt) = Sigmoid((wT
c xt)/d) (7)

3. MULTI-BRANCH LEARNING

In this section, we describe in detail the proposed multi-
branch learning (MBL) method for weakly-supervised SED.

The structure of MBL consists of a feature encoder and
multiple branches. Since we argue that similar to multiple
tasks, multiple learning purposes can also prevent the feature
encoder from overfitting, we design multiple branches with
different learning purposes.

For weakly-supervised SED, we follow the basic MIL
framework mentioned in section 2. However, different from
current methods, we employ multiple combinations of dif-
ferent MIL strategies and different pooling methods such as
GAP and GMP to produce multiple branches with different
learning purposes. As shown in Figure 1, there are two types
of branches in our model: the main branch to provide the
eventual detection results and the auxiliary branches to aid in
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Fig. 1. The multi-branch learning method

training. The main branch employs an embedding-level ap-
proach while the auxiliary branches employ an instance-level
approach with different pooling methods. All the branches
share the same high-level feature output by the feature en-
coder and predict the clip-level probability separately. Since
all the branches are independent of each other, they optimize
the feature encoder according to their unique learning pur-
pose respectively. In this way, the feature encoder is able to
obtain different characteristics due to the efforts of different
branches. The losses of all the branches are calculated by
cross entropy loss function with the clip-level ground truth

L = −
∑
c

(yclog(P̂(yc|x))+(1−yc)log(1−P̂(yc|x))) (8)

and utilized to update the feature encoder synchronously.

Ltotal = αLmain +
∑

βLauxiliary (9)

During training, we set α to be 1.0, and β to be 0.5.
Furthermore, we employ the CNN framework illustrated

in Figure 2 as our feature encoder. In this figure, the pooling
block contains a pooling module and a classifier.

4. EXPERIMENT

4.1. Dataset

4.1.1. DCASE 2018 Task 4

The DCASE 2018 Task 4 dataset [16] contains 10 domestic
sound event classes. The dataset is divided into 4 parts: a
weakly-labeled training set (1578 clips), an unlabeled train-
ing set (54411 clips), a strongly-labeled validation set (288
clips) and a strongly-labeled test set (880 clips). We take the
weakly-labeled set as our training set.

4.1.2. URBAN-SED

The URBAN-SED dataset is generated by the Scaper sound-
scape synthesis library [17]. The dataset containing 10 sound
event classes is divided into 3 parts: a strongly-labeled train-
ing set (6000 clips), a strongly-labeled validation set (2000
clips) and a strongly-labeled test set (2000 clips). We only
utilize the weak annotations of the training set.

4.2. Pre-processing and post-processing

We employ 64 log-mel bank magnitudes extracting from
40ms frames with 50% overlap. In this way, all the 10-second
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Fig. 2. The model architectures

audio clips are converted to feature vectors of 500 frames. For
post-processing, all the frame-level predictions are smoothed
by a median filter, of which the window sizes are adaptive to
event categories.

4.3. Training and evaluation

The feature encoder of the DCASE 2018 Task 4 model con-
sists of 3 CNN blocks, each of which contains a convolu-
tion layer, a batch normalization layer and a ReLU activation
layer. For the URBAN-SED dataset, the feature encoder con-
sists of 9 CNN blocks with dropout because URBAN-SED
dataset is much larger than the DCASE 2018 Task 4 dataset.
For embeding-level ATP, we set scale factor d as the num-
ber of feature dimension (160) divided by 2.5 for the DCASE
2018 Task 4 model and as the number of feature dimension
(1024) divided by 3.0 for the URBAN-SED model.

We report the event-based marco F1 score [18] on DCASE
2018 Task 4 and the segment-based marco F1 score [18] on
URBAN-SED. All the experiments are repeated 40 times
with random initiation and we report both the average result
and the best result of each model.

4.4. Results

Experimental results are shown in Table 2 and 3, where E-
* denotes the embedding-level approach and I-* denotes the
instance-level approach. E-ATP + I-GAP + I-GMP achieves
the best average performance with event-based F1 scores of
0.320 on the DCASE 2018 Task 4 dataset and segment-based



Table 2. The event-based F1 score for DCASE 2018 Task 4

Model Average F1 Best F1

The 1st place - 0.324
E-GMP 0.209± 0.0168 0.243
E-GMP + I-GMP 0.225± 0.0151 0.256
E-GMP + I-GAP 0.242± 0.0158 0.279
E-GMP + I-GAP + I-GMP 0.236± 0.0194 0.267
E-GAP 0.208± 0.0086 0.227
E-GAP + I-GAP 0.210± 0.0084 0.225
E-GAP + I-GMP 0.213± 0.0107 0.232
E-GAP + I-GAP + I-GMP 0.217± 0.0081 0.237
E-ATP 0.310± 0.0164 0.335
E-ATP + I-GMP 0.315± 0.0160 0.343
E-ATP + I-GAP 0.311± 0.0143 0.343
E-ATP + I-GAP + I-GMP 0.320± 0.0141 0.346

F1 scores of 0.590 on the URBAN-SED dataset. The best re-
sult of E-ATP + I-GAP + I-GMP on the DCASE 2018 Task 4
dataset achieves 0.346 which outperforms the first place [19]
in the challenge by 2.2 percentage points, while that on the
URBAN-SED dataset achieves 0.616, which is merely 3.1
percentage points behind the SOTA model [20] trained with
strong annotations.

More different learning purposes lead to better re-
sults We find that if the auxiliary branch utilizes the different
pooling methods from the main branch, good performance
can be achieved. As shown in Table 2 and 3, the model
with branches utilizing different pooling methods tends to
perform better than that with branches utilizing the same
pooling methods and that with only one main branch. More
specifically, E-GMP + I-GAP performs better than E-GMP +
I-GMP and E-GMP. We argue that this is because that both
E-GMP and I-GMP use a small subset (due to global max
pooling) of the feature while the E-GAP and I-GAP use the
whole feature, so the characteristic of feature that E-GMP fo-
cuses on is more close to that of I-GMP than I-GAP. Similar
to multi-task learning where the difference among multiple
tasks reduce the risk of making feature encoder overfit one
task, the differences between multiple learning purposes of
multiple branches make the feature encoder be more general
and hard to overfit clip-level or frame-level characteristic and
improve the combination performance of audio tagging and
event boundary detection. The result that E-GAP + I-GMP
performs better than the E-GAP + I-GAP and E-GAP further
proves this explanation. Besides, the result of E-GAP + I-
GAP is worse than E-GAP in URBAN-SED experiments. We
argue that if the auxiliary branch employs the same kind of
pooling method as the main branch, the performance of the
model might not be improved because the learning purposes
of the two branches are not different enough to prevent the
feature encoder from overfitting.

More auxiliary branches leads to better results As
shown in Table 2 and 3, E-ATP + I-GAP + I-GMP, which em-

Table 3. The segment-based F1 score for URBAN-SED

Model Average F1 Best F1

Adaptive pooling (weakly-labeled)[21] 0.533
Supervised SED[20] - 0.647
E-GMP 0.528± 0.0198 0.557
E-GMP + I-GMP 0.552± 0.0113 0.578
E-GMP + I-GAP 0.557± 0.0138 0.593
E-GMP + I-GAP + I-GMP 0.570± 0.0091 0.592
E-GAP 0.545± 0.0112 0.569
E-GAP + I-GAP 0.531± 0.0134 0.563
E-GAP + I-GMP 0.552± 0.0087 0.571
E-GAP + I-GAP + I-GMP 0.547± 0.0111 0.574
E-ATP 0.581± 0.0102 0.599
E-ATP + I-GMP 0.582± 0.0116 0.605
E-ATP + I-GAP 0.585± 0.0109 0.600
E-ATP + I-GAP + I-GMP 0.590± 0.0104 0.616

ploys two different auxiliary branches, performs better than
E-ATP + I-GAP and E-ATP + I-GMP. Since the ATP chooses
some frame-level features to train the model, the difference
between the ATP and GMP or ATP and GAP is not as large
as the difference between GMP and GAP. As a result, the
improvement of E-ATP + I-GMP or E-ATP + I-GAP is lim-
ited. However, if the two auxiliary branches are both added,
the difference between main branch and auxiliary branches
can be much larger so that improves the performance of the
model.

Therefore, more auxiliary branches with different pooling
methods can further increase the difference between the main
branch and the auxiliary branches so that further reduce the
risk of overfitting.

5. CONCLUSIONS

In this paper, we propose a multi-branch learning method for
weakly-supervised SED. It consists of a feature encoder and
multiple branches which share the same feature encoder. The
multiple branches with different learning purposes are imple-
mented by combinations of different MIL strategies including
the instance-level and embedding-level approach, and differ-
ent pooling methods. As a result, the feature encoder is ex-
pected to have both frame-level and clip-level characteristics
so that be prevented from ovefitting any one of the two char-
acteristics. The proposed method achieves an event-based F1
score of 34.6% on the DCASE 2018 Task 4 dataset and out-
performs the first place model by 2.2 percentage points.
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Lozano-Pérez, “Solving the multiple instance problem
with axis-parallel rectangles,” Artificial intelligence,
vol. 89, no. 1-2, pp. 31–71, 1997.

[10] Deepak Pathak, Evan Shelhamer, Jonathan Long, and
Trevor Darrell, “Fully convolutional multi-class multi-
ple instance learning,” arXiv preprint arXiv:1412.7144,
2014.
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