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ABSTRACT

We propose fast independent vector extraction (FIVE), a new al-
gorithm that blindly extracts a single non-Gaussian source from a
Gaussian background. The algorithm iteratively computes beam-
forming weights maximizing the signal-to-interference-and-noise
ratio for an approximate noise covariance matrix. We demonstrate
that this procedure minimizes the negative log-likelihood of the
input data according to a well-defined probabilistic model. The
minimization is carried out via the auxiliary function technique
whereas, unlike related methods, the auxiliary function is globally
minimized at every iteration. Numerical experiments are carried out
to assess the performance of FIVE. We find that it is vastly superior
to competing methods in terms of convergence speed, and has high
potential for real-time applications.

Index Terms— Independent Vector Extraction, Auxiliary Func-
tion, Blind Source Separation, Maximum SINR Beamforming,
Gaussian Background

1. INTRODUCTION

Blind source extraction (BSE) aims at separating a single target sig-
nal from background noise without any prior information [1, 2].
While BSE predates independent component analysis (ICA) [3], the
two problems are tightly related [4, 5, 6]. It can be seen as a blind
source separation (BSS) problem where only one source is retrieved.
BSE most often relies on the independence of a non-Gaussian source
contrasted to a Gaussian [7], or non-Gaussian [8], background.

Our focus is on audio applications where the mixture is typi-
cally convolutive. In this case, the frequency domain BSS frame-
work [9] can be leveraged to transform the convolution into point-
wise multiplication in the time-frequency domain. Then, BSE can
be applied in parallel to all the narrowband channels. Done directly,
however, this may lead to a problem whereas different sources are
extracted at different frequencies. This is known as the permuta-
tion ambiguity problem in ICA [10]. An elegant solution is to con-
sider multivariate probability distributions over frequencies, giving
rise to the independent vector analysis (IVA) [11, 12] and extrac-
tion (IVE) [7] paradigms in BSS and BSE, respectively. For BSE,
OGIVE, a gradient-ascent algorithm, was proposed and shown to
be effective [7]. However, the speed and convergence guarantees of
gradient methods are limited. Recently, we introduced OverIVA, an
algorithm for overdetermined BSS with fast and guaranteed conver-
gence. OverIVA assumes a super-Gaussian model for sources and
a Gaussian background. The algorithm is obtained by applying the
auxiliary function optimization method, similarly to AuxIVA [13],
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with the addition of orthogonality constraints between the target and
background signals [14]. This algorithm is applicable to IVE.

In this paper, we introduce a new algorithm for fast IVE (FIVE).
FIVE iteratively applies maximum signal-to-interference-and-noise
ratio (SINR) beamforming [15] to improve upon an initial estimate
of the target signal. We show that this deceptively simple algorithm
can be rigorously derived by minimizing the same cost function as
OverIVA. Whereas OverIVA relied on orthogonal constraints for the
separation of the background, FIVE solves the minimization of the
auxiliary function to its global minimum. Interestingly, this is done
by solving exactly a special case of the hybrid exact-approximate di-
agonalization (HEAD) problem [16]. Experiments reveal that FIVE
is blazingly fast and only requires a few iterations to achieve over
4 dB signal-to-distortion ratio (SDR) improvement. Further investi-
gation reveals that FIVE behaves similarly to OverIVA and OGIVE
in the presence of a mismatched background.

The reminder of this paper is organized as follows. Section 2 in-
troduces notation, signal model and maximum SINR beamforming.
FIVE is described informally in Section 3 and analyzed in Section 4.
The experiments are discussed in Section 5. Section 6 concludes.

2. BACKGROUND

2.1. Signal Model and Notation

We consider the mixture of a single source with an arbitrary back-
ground noise recorded by M microphones. In the time-frequency
domain, our signal model is

xmfn = smfn + bmfn, (1)

where xmfn, smfn, and bmfn are the short-time Fourier transforms
(STFT) [17] of the microphone, target, and background signals, re-
spectively. The indices f = 1, . . . , F and n = 1, . . . , N are the
discrete frequency bins and frames, respectively. For convenience,
we can group all microphone signals in the complex-valued vectors

xfn =
[
x1fn · · · xMfn

]
∈ CM . (2)

In the rest of the manuscript, we use lower and upper case bold let-
ters for vectors and matrices, respectively. Furthermore, A>, AH,
det(A) and tr(A) denote the transpose, conjugate transpose, deter-
minant and trace of matrix A, respectively. Unless specified other-
wise, indices m, f , and n always take the ranges defined here.

2.2. Maximum SINR Beamforming

Beamforming addresses the problem of finding the optimal weight
vectors wf to combine the microphone signals such that wH

fxfn is
close to the target signals. This is generally achieved by optimizing a
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well-chosen cost function. One can define the signal-to-interference-
and-noise ratio (SINR)

SINRf [w] =
wHΣ

(s)
f w

wHΣ
(b)
f w

(3)

where Σ
(s)
f and Σ

(b)
f are the covariance matrices of target and back-

ground signals, respectively. The Maximum SINR beamformer is
the one maximizing (3) [15]. Note that, if the target and background
are uncorrelated, replacing Σ

(s)
f by Σ

(x)
f , the covariance matrix of

the microphone signals, in (3) only changes the ratio by a constant
additive factor.

In practice, we must approximate the covariance matrices from
the available data, e.g. the estimate of Σ

(x)
f is the sample covariance

matrix of the input data

Cf =
1

N

∑
n

xfnx
H
fn. (4)

Now, provided a (possibly scaled) estimate V f ∼ Σ
(b)
f , we can

obtain wf as the result of the following optimization,

wf = arg max
w∈CM

wHCfw

wHV fw
≈ arg max

w∈CM

C1SINRf [w] + C2, (5)

whereC1 > 0 andC2 are arbitrary constants. The optimizer of (5) is
the generalized eigenvector corresponding to the largest generalized
eigenvalue for the problem Cfw = λV fw. However, finding a
good estimate V f turns out to be a challenging problem, and the
Maximum SINR beamformer is difficult to use in practice.

3. ALGORITHM

Suppose we are given an initial guess ŝfn of the target signal, typi-
cally one of the microphone signals. Then an (unscaled) estimate of
the background covariance matrix is

V f =
1

N

∑
n

ϕn(rn)xfnx
H
fn, ∀f, (6)

where ϕn(r) : R+ → R is a, yet-to-be-defined, strictly decreasing
function, and rn is the magnitude of the target signal estimate,

rn =

√∑
f
|ŝfn|2, ∀n. (7)

Due to ϕn(rn), the importance of target dominated frames, i.e.
where rn is large, is reduced, while background dominated frames
are emphasized. We can now compute wf as in (5) by solving a
generalized eigenvalue problem. Now, using the newly obtained
demixing filter wf , we update the target signal estimate

ŝfn ← wH
fxfn, ∀f, n. (8)

The procedure is then repeated until convergence, or for a fixed num-
ber of iterations. Note that a normalization step is needed to keep the
extracted signal scale under control.

A simple improvement to this algorithm is to pre-whiten the in-
put signal so that Cf = I . Then, solving (5) only requires the com-
putation of the smallest eigenvalue and corresponding eigenvector
of V f . Pseudo-code for the final form of the algorithm is provided
in Algorithm 1. While the procedure just presented might seem ad-
hoc, we show in the following section that it can be rigorously de-
rived from the minimization of a well-chosen cost function, and that
its convergence is, in fact, guaranteed.

Input : Input signals {xfn}, Initial estimate {ŝfn}
Output: Extracted signal {sfn}
# Input pre-whitening
x̃fn = Q−H

f xfn, with 1
N

∑
n xfnx

H
fn = QH

fQf , ∀f
for loop← 1 to max. iterations do

rn ←
√∑

f |ŝfn|2, ∀n
for f ← 1 to F do

Ṽ f ← 1
N

∑
n ϕn(rn)x̃fnx̃

H
fn

Let λM and rM be the smallest eigenvalue of Ṽ f

and corresponding eigenvector, respectively

wf ← λ
− 1

2
M rM

ŝfn ← wH
f x̃fn, ∀n

end
end
Algorithm 1: FIVE: Fast Independent Vector Extraction

4. DERIVATION

We turn now to the analysis of the derivation of Algorithm 1. We
prove that it extracts the maximum likelihood source estimate under
a well-defined probabilistic model. We consider the source extrac-
tion problem as a special case of determined blind source separation.
More specifically, we want to find the M ×M demixing matrix

W f =
[
wf Jf

]H
, (9)

where Jf ∈ CM×M−1 is such that sfn = wH
fxfn is independent

from zfn = JH
fxfn.

Theorem 1. Let the three following assumptions hold.

• Target signal and background are statistically independent.

• The source signal distribution is spherical super-Gaussian

pSn(s1n, . . . , sFn) ∼ e−Gn(
√∑

f sfn), (10)

with Gn : R+ → R, strictly increasing, differentiable, and
such that G′n(r)/r is strictly decreasing (see [13, 18] for de-
tails).

• The background is Gaussian with arbitrary covariance struc-
ture across channels, but uncorrelated over frequencies.

Then, Algorithm 1 with

ϕn(r) =
G′n(r)

2r
(11)

is guaranteed to converge to a stationary point of the negative log-
likelihood of the observed signal.

The rest of this section proves the theorem. Based on the prob-
abilistic model enounced in Theorem 1, we can write explicitly the
negative log-likelihood of the observed signal,

L = −2N
∑
f

log |det(W f )|+
∑
n

Gn

(√∑
f
|wH

fxfn|2
)

+
∑
fn

xH
fnJfB

−1
f JH

fxfn, (12)

where B = E
[
zfnz

H
fn

]
is the covariance matrix of the background

after demixing. At this point, we will assume that B is known or can



be estimated. As we will find out, it is in fact irrelevant. The maxi-
mum likelihood estimate of the target signal is provided by minimiz-
ing (12) with respect to wf and Jf . While direct minimization of L
is hard due to the non-quadratic term in wf , it can be done via the
auxiliary function approach [18, 13]. We make use of an inequality
for super-Gaussian sources to create a majorizing function of (12).

Lemma 1 (from [18]). LetGn(r) be as defined in Theorem 1. Then,

Gn(r) ≤ G′n(r0)
r2

2r0
+
(
Gn(r0)− r0

2
G′n(r0)

)
, (13)

with equality for r = r0.

Then, the majorizing function L2 is as follows

L ≤ L2 = −2N
∑
f

log | det(W f )|+N
∑
f

wH
fV fwf

+N
∑
f

tr
(
JH
fCfJfB

−1
f

)
+ constant, (14)

with V f , Cf , and rn defined in (6), (4), and (7), respectively.
Then, the auxiliary function method (also known as majorization-
minimization) consists in iteratively minimizing (14) and recomput-
ing rn based on the new demixing filter. This method is guaranteed
to converge to a stationary point of (12) [19]. Equating the gradient
of L2 to zero leads to the following quadratic system of equations[

wH
f

JH
f

] [
V fwf CfJf

]
=

[
1 0>

0 Bf

]
, ∀f. (15)

We omit the index f from here on for convenience. This is a special
case of the HEAD problem [16] where M − 1 columns share the
same matrix. Although a general closed form solution of HEAD is
unknown for M > 2, we show that (15) can be solved exactly. This
is a generalization of the case M = 2, presented in [20].

Proposition 1. Let C and B, both Hermitian matrices, have de-
compositions C = QHQ and B = UHU , and let λ1 ≥ . . . ≥ λM
and r1, . . . , rM be the eigenvalues and eigenvectors, respectively,
of Ṽ = Q−HV Q−1. In addition, let Rk be the M ×M − 1 matrix
whose columns are r`, ∀` 6= k. Then,

w =
1√
λk

Q−1rk, J = Q−1RkU , (16)

is a solution to (15) for every k = 1, . . . ,M .

Proof. The proof follows by substituting (16) into (15), applying the
properties of the eigenvectors, and the decompositions.

As we have just shown, there are M , possibly distinct, solutions
to (15), corresponding to M stationary points of (14).

Proposition 2. The global minimum of (14) is given by the minimum
eigenvalue, i.e. k = M .

Proof. Under the choice (16), the only non-constant term in (14) is
the log-determinant. All we need to show is that the determinant is
maximized. Because Q and U are independent of k, and

W H = Q−1
[

1√
λM

rM RM

] [
1 0>

0 U

]
, (17)

we only need to focus on the determinant of the middle term. There,∣∣∣det
[

1√
λM

rM RM

]∣∣∣ =

√
λk
λM

∣∣∣det
[

1√
λk

rk Rk

]∣∣∣ , ∀k,
and the proof follows because λk/λM ≥ 1 for any k.
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Fig. 1: Right, the room setup for simulation. Left, the histogram of simulated
reverberation times.

There are two points left to obtain the final algorithm. First, Q
never changes throughout the algorithm and corresponds to a whiten-
ing of the input data. It can by applied once and for all at the begin-
ning of the algorithm. Further multiplications are thus avoided. Fi-
nally, we are only interested in w. Being never needed, computation
of J is omitted, which makes knowledge or estimation of B moot.

5. EXPERIMENTS

The performance of FIVE is assessed via simulations. We study the
convergence speed, the separation level after a few iterations, and
the effect of mismatch in the background model.

5.1. Experimental Setup

We use the pyroomacoustics toolbox [21] to simulate 100 ran-
dom rectangular rooms with walls between 6 m and 10 m and ceiling
from 2.8 m to 4.5 m high. Simulated reverberation times (T60) range
from 60 ms to 540 ms. Sources and microphone array are placed at
random at least 50 cm away from the walls and between 1 m and 2 m
high. The array is circular and regular with 2, 3, 5, or 8 microphones,
and radius such that neighboring elements are 2 cm apart. The dis-
tance from target source to array center is in [dcrit, dcrit + 1], where
the critical distance dcrit = 0.057

√
V/T60, with V the volume of

the room [22]. The Q = 10 interferers are at least dcrit + 1 from the
array. We define SINR = σ2

T /(Qσ
2
I + σ2

w), where σ2
T and σ2

I are
the variance of target and interferers at the first microphone. We fix
SINR = 5 dB. The uncorrelated noise variance σ2

w is set to be 1 %
of the total noise-and-interference. An illustration of the room setup
and a histogram of the reverberation times are provided in Fig. 1. We
use a 4096 points STFT with half-overlap and a Hamming window.

We compare FIVE to OverIVA [23], full AuxIVA [13] with se-
lection of the strongest output channel, and the gradient ascent based
algorithm, OGIVE [7]. The first three are run for 50 iterations, while
the last one is run for 4000 iterations with step size 0.1, as specified
in [7]. We compare two source models: time-invariant Laplace and
time-varying Gaussian. Without going into details due to lack of
space, these models lead to the weighting functions

ϕLap
n (r) = (2r)−1, and ϕGau

n (r) = (r2/F )−1, (18)

respectively. The scale of the separated signals is restored by pro-
jection back onto the first microphone [24]. The separation perfor-
mance is evaluated in terms of signal-to-distortion ratio (SDR) and
signal-to-interference ratio (SIR) [25] using a popular toolbox [26].

5.2. Convergence Speed

Fig. 2 shows the mean evolution of SDR improvement (∆SDR)
as a function of runtime. The runtime is normalized per one sec-
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Fig. 2: Mean convergence curves: SDR improvement as a function of the runtime for 1 s of input signal. From left to right, 2, 3, 5, and 8 microphones are used.
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Fig. 3: Box-plots of the SDR improvement after just three iterations.

ond of input signal to gauge potential for real-time applications.
FIVE (Laplace) is the fastest and reaches peak ∆SDR in one to
three iterations. We observe however that the ∆SDR subsequently
decreases before reaching convergences. Note that this is not a con-
tradiction since the cost function (12) is not the SDR. We conjecture
this to be due to a mismatch with the signal model. In terms of speed,
FIVE (Gauss) is close behind but stably attains a larger ∆SDR value.
OverIVA behaves similarly in terms of ∆SDR, which is expected
because it also minimizes (12). Its convergence speed is about five
times slower. Doing full separation with AuxIVA improves ∆SDR
performance, likely due to a better modelling of the background as
extra independent sound sources. However, convergence is at least
one order of magnitude slower, which hits particularly hard when
using more microphones. The gradient-based OGIVE converges at
a much slower pace, but eventually reaches similar ∆SDR values,
although outside the limits of Fig. 2. We do admit, however, that its
runtime might improve with a more careful implementation.

5.3. Separation Performance after Three Iterations

Fig. 3 displays box-plots of the ∆SDR and ∆SIR of FIVE, OverIVA,
and AuxIVA after three iterations. We leave out OGIVE of the com-
parison because it was difficult to include it in a meaningful manner.
In all cases FIVE dominates, with OverIVA behind, and AuxIVA
last. Also recall that three iterations of AuxIVA is about ten times
longer than the other two. In general, time-varying Gauss model
achieves higher ∆SDR and Laplace model higher ∆SIR.

5.4. Effect of Background Model Mismatch

In our experiments so far, the background has been composed of
ten interference sources which is close to the Gaussian background
assumption. We now rerun the experiment with the conditions mod-
ified as follows. The SINR is decreased to 0 dB and the number of
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Fig. 4: Success rate at SINR = 0dB and for different number of interferers.

microphones set to three. Then, we run the experiment with one,
two, five, and ten interferers and measure the success rate of each
algorithm. The success is defined as ∆SIR ≥ 1 dB. The experi-
ment result is shown in Fig. 4 When there is only one interferer, we
expect all algorithms to fail because it is not possible to tell which
source is the target without prior information. Indeed, even Aux-
IVA is slightly lower than 0.5, meaning that it probably separates
the sources, but picks the wrong one half of the time. Other algo-
rithms fail more often, which implies that separation itself fails. As
we increase the number of interferers and the background approach
Gaussianity, the success rate of all algorithms increases, with the ex-
ception of OGIVE (Gauss). There is not much difference between
FIVE and OverIVA, but AuxIVA, which does not assume a specific
background model, performs markedly better.

6. CONCLUSION

We presented a deceptively simple algorithm for BSE which can be
described as iterative maximization of the SINR. The algorithm can
be rigorously derived and its convergence is guaranteed. In experi-
ments we showed that the proposed algorithm is blazingly fast, only
needing a few iterations, even for up to eight microphones. In con-
trast, full IVA takes an order of magnitude longer, or more, to ob-
tain the same SDR improvement. However, our method assumes
a Gaussian distributed background and its performance degrades,
sometimes significantly, when this is not fulfilled. Because BSE
relies exclusively on the cost function for the extraction, a crucial
next step is to identify a more suitable background model. It should
be flexible enough to accommodate a wide variety of conditions, yet
offer good contrast between target and background, for example as
in [8].



7. REFERENCES

[1] P. J. Huber, “Projection pursuit,” Ann. Stat., vol. 13, no. 2, pp.
435–475, Jun. 1985.

[2] J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-
Gaussian signals,” IET, vol. 140, no. 6, p. 362, 1993.

[3] P. Comon and C. Jutten, Handbook of blind source separation:
independent component analysis and applications, 1st ed. Ox-
ford, UK: Academic Press/Elsevier, 2010.

[4] S. Amari and A. Cichocki, “Adaptive blind signal processing-
neural network approaches,” Proc. IEEE, vol. 86, no. 10, pp.
2026–2048, 1998.

[5] S. A. Cruces-Alvarez, A. Cichocki, and S. Amari, “From blind
signal extraction to blind instantaneous signal separation: Cri-
teria, algorithms, and stability,” IEEE Trans. Neural Netw.,
vol. 15, no. 4, pp. 859–873, Jul. 2004.

[6] S. Javidi, D. P. Mandic, and A. Cichocki, “Complex blind
source extraction from noisy mixtures using second-order
statistics,” IEEE Trans. Circuits Syst. I, vol. 57, no. 7, pp.
1404–1416, Jul. 2010.

[7] Z. Koldovský and P. Tichavský, “Gradient algorithms for
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