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Adel Zahedi™, Michael Syskind Pedersen', Jan @stergaard®*, Lars Bramslpw?,
Thomas Ulrich Christiansen', Jesper Jensen'™
 Oticon A/S, Smgrum, Denmark
* Aalborg University, Aalborg, Denmark

ABSTRACT

One of the challenges with the implementation of multi-microphone
noise reduction systems in practical applications lies in the need
for the knowledge of the speech and noise covariance matrices.
Recently, a method based on Maximum Likelihood (ML) estimation
addressed this problem. Despite its relative success in practical se-
tups, this method may suggest negative spectral components for the
clean speech due to noise influences. In this paper, we suggest a new
estimation technique that tackles this issue by enforcing a power
constraint on the estimation problem. We compare the proposed
method with the ML method both in synthetic and real-life scenar-
ios using objective measures. The results suggest that the proposed
method can improve speech quality without a loss of intelligibility.

Index Terms— Multichannel Wiener filter, maximum likeli-
hood estimation, hearing-assistive devices, water filling

1. INTRODUCTION

Poor performance in noise is one of the most common points of dis-
satisfaction for the users of hearing-assistive devices (HADs) [1,2].
Noise reduction is for this reason an integral part of most modern
HADs. One of the most well-known noise reduction techniques is
the multi-channel Wiener filter (MWF) [3,4]. Despite offering sim-
ple closed-form solutions, implementation of MWFs in practical se-
tups such as in HADs tangles with practicalities, among which es-
timation of the generally time-varying inter-microphone statistics of
speech and noise is particularly challenging.

The MWF can be decomposed as a cascade of an MVDR beam-
former and a single-channel postfilter [5]. Several methods have been
proposed for estimating the signal statistics necessary to implement
the MWF beamformer in general [6—10] and the speech and noise
power spectral densities (PSD) for implementing the postfilter in par-
ticular [11-14]. In [13], a Maximum Likelihood (ML) scheme was
proposed for estimating the speech and noise PSDs. This method
has been successfully used for scientific [15] as well as industrial
[14, 16] applications. However, typically there are some frequency
bins where the ML estimation scheme suggests negative values for
the speech spectrum. Rounding these components up to zero, which
is often done in practical speech enhancement systems [17], leads to
an overall tendency to overestimate the speech power (cf. Section 2
for more details). In this paper, we propose an estimation technique
that alleviates this issue. Although the proposed method can be ap-
plied for speech an noise PSD estimation in a broader context, in this
paper, we focus on noise reduction using the MWF.

The remaining of this paper is organized as follows: In Section
2, we review the ML estimation method of [13]. In Section 3, we
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propose a new formulation and solve the resulting problem. In Sec-
tion 4, we compare the proposed method with the one in [13] using
simulations in a hearing aid setup. Section 5 concludes the paper.

2. ML ESTIMATION OF SPEECH AND NOISE SPECTRA

In the short-time Fourier transform domain, we use the following
model for the noisy speech acquired by M microphones:

X (k1) = S(k,D)d(k, 1) + V(k,1), M
where the M -dimensional vectors X (k, 1) and V (k, ) respectively
represent noisy speech and noise signals at the M microphones at
frequency bin k and time frame [. The clean speech signal at the
reference microphone is denoted by S(k, ), and the M -dimensional
vector d(k, 1) is the relative transfer function for the M microphones
[18]; i.e. the transfer function from the target speech source to the M
microphones normalized by the one for the reference microphone.
Assuming that the noise and speech signals are uncorrelated and us-
ing (1), the covariance matrix of the noisy speech is given by:

Ca(k, 1) = Ao (k, )d(k, A" (k, 1) + Ao (k, DT (k, 1), ()

where \s(k,1) = |S(k,1)|? and A, (k,1) are, respectively, the clean
speech and noise spectra at the reference microphone, and I'(k, 1)
is the noise covariance matrix normalized by the noise variance at
the reference microphone. One can say that I'(k, l) represents the
structure of the noise covariance matrix. Using a voice activity de-
tector, the noise covariance matrix can be estimated directly during
the speech absence intervals. Assuming that the structure of the co-
variance matrix remains unchanged during speech activity intervals,
(2) can be written as:

C.(k,1) = \s(k, D)d(k, )d™ (k, 1) + Ao (k, )T(k,1o),  (3)

where [p indexes the most recent frame with no speech activity.
Given that the relative transfer functions d(k, [) are known, the only
unknown parameters left in (3) are As(k,1) and A, (k,[). Assume
that X (k,!) follows a zero-mean complex circularly symmetric
Gaussian distribution with the covariance matrix given in (3); i.e.

Ix (X(k, D)5 As(ky 1), Ao (K, 1)) = CN(0,C (K, 1). (4

Also suppose that D independent observations of the noisy speech
are available; e.g. D consecutive frames X ,, (k, ) = [X(k,l— D+
1)...X(k,1)] assuming independence across the frames. The joint
probability density function (pdf) of X, (k, ) is simply given by the
product of the density functions of the individual frames, and the ML
estimation of A\s(k,[) and A, (k,!) can be obtained by maximizing
the resultant joint pdf; i.e.

lanD (XD(ICJ);As(kvl)v)‘v(kvl))v (5)

max
As (1), A0 (K,1)



which can be solved in closed-form, yielding the following [13,19]:

A (1) = St (%Xg(k’ DBk, )

(BH(k,l)I‘(k,lo)B(k,l))_l BH(k,l)XD(k,l)) , 6)

AV 1) = wH(k,l)(Cr(k,l)—AJZIL(k:,l)I‘(k,lo))w(k,l), %)

where the M x M—1 blocking matrix B(k, ) can be calculated as
the first M — 1 columns of In; — d(k,1)d™(k,1)/d"(k, 1)d(k, 1),
and C,(k,1) and w(k, 1) (the MVDR beamformer weight vector)
are defined as:

l
Colk) 2 55 > Xk )X (k,j), )
j=l—D+1
-1
R A G () ©

dH (kDT -1 (k,lo)d(k,1)"

The estimator given by (6) and (7) is the minimum-variance un-
biased estimator, thus achieving the Cramér-Rao lower bound [13].
However, when the noise level is large compared to the speech level
at a certain frequency bin k, NY*(k, ) in (7) may become negative.
This can happen even at high global SNRs at frequency bins where
the speech power is low. The typical treatment in such cases is to
round up the negative values to zero (equivalent to adding a nonneg-
ativity constraint to (5)). However, one can argue that as the negative
values of AM%(k, 1) are due to the noise influence, there is no rea-
son to believe that the positive ones are not, especially taking into
account that the estimator is unbiased. Getting rid of the negative
values by trimming them to zero at some frequency bins, leaves us
with spurious positive estimates at some other frequency bins, which
give rise to a net effect of overestimating the speech power. Conse-
quently, when used in an MWF context, the noise in the resulting
enhanced speech signal would be under-suppressed. In the next Sec-
tion, we propose a method that addresses this issue.

3. PROPOSED METHOD

3.1. Problem Formulation

Suppose that £ = {1,..., K} is the set of all frequency bins. Prob-
lem (5) is defined over individual frequency bins, and one needs to
solve it separately for each and every k € K. Equivalently, one can
write the joint pdf for all frequency bins as the product of the in-
dividual pdfs in (4), and obtain the same solution as in (6)—(7) by
solving the following problem:

K
X ! X 0k, 1) Ak, 1), Aok, 1)) (10
Aol Ao D “kUlszLD( )i Ask, 1), Mok, 1)). (10)

AL, D)y ooy A (K D)

As argued in Section 2, when the noise influence is significant,
AME(E, 1) resulting from (10) may take negative or positive spuri-
ous values depending on the frequency bin. Let us denote the ML
estimate of the speech power in frame [ by PML(1); i.e.

K
PR £ N (kD). (1)

k=1

14

Fig. 1. An illustration of the water-filling solution.

Note that PM* (1) averages the noise influence over the individual
spectral components, and is therefore likely to be less noisy than
the individual estimates M~ (k,1). Based on this rationale, we in-
troduce a power constraint to (10) to formulate a new estimation
problem as follows:

K
1 Xy 1); As(k, 1), A, 1
As(l,l),éat}i\s(K,l) nkl;[lfzp(fp( )i Asle, 1), Aok, 1))
Ao(L,0), oo Ao (K, 1)

K
st Y As(k,1)=P(1) and As(k,1)>0 forall k € K. (12)

k=1

3.2. Problem Solution

We prove in Appendix that the solution to (12) for A, (k,1) is the
same as AME (k,1) as expected (since the constraint in (12) does
not depend on A, (k, 1)), and for A\ (k, ) it is given in the following
water-filling form:

+
g(k,zi,gl()z)+1 _1> s

where ()" £ max(-,0), ¢(k,1) £ wi(k,1)C.(k,)w(k,1), and
the water level (1) > 0 is adjusted such that the following holds:

Ao (k1) = (A(k )=k, 1)+

K
D> Nk, 1) = PME(). (14)
k=1

The water level (1) > 0 can be calculated using any of the available
efficient algorithms (cf. [20]) or simply using bisection. The graph
of the term §(p) £ —¢ 4 (v/2Cp + 1 — 1)/ is shown in Fig. 1.
When A2 (k,1) > 0 for all k € K, the water level is p(l) = 0,
yielding A3 (k, 1) = AME(k,1). When AME(k,1) < 0 for at least
one k, §(1) is always negative, implying that X% (k, 1) < M % (k, 1).
This however is only the case in frequency bins where A}~ (k, 1) >
0. In other bins, the (-)™ operator in (13) sets \*(k,[) equal to
0. In summary, to calculate A (k, 1) from A% (k, 1), all negative
components are trimmed to 0, and each positive one is reduced by
an amount that depends on its corresponding ¢ (k, ).

3.3. Subband Implementation

The MWEF is optimal in sense of mean-squared error (MSE). The
proposed method may lead to an implementation that is closer to the
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Fig. 2. Improvement gained by the proposed method over the ML estimation with three objective performance measures, four different frame

sizes and three different noise types.

Table 1. Scores for the ML method with L. = 256 in cafeteria noise.

Input SNR | -12 -6 0 6 12 18 24
PESQ 1.06 1.18| 1.42| 2.00 | 2.58 | 3.25 | 3.60
Seg. SNR | -6.62 | 0.40| 6.10| 12.05] 17.36| 22.63| 28.90
STOI 0.57 | 0.70| 0.81| 0.90 | 0.96 | 0.98 | 0.99

ideal MWF, yielding a lower MSE. This, however, may not neces-
sarily translate into perceptual improvements. To optimize the per-
formance in a more perceptual-oriented manner, we implement (12)
in subbands. Suppose that ™" and k"™ index the lowest and high-
est frequencies in subband 4, respectively. The ML estimation of the
speech power in subband ¢ is given by:

max
k'i

PREM 2 DT AR D). (15)

k= min

Obviously, Aj(k,1) will still be given by (13), but the subband-
dependent water level p; (1) should be adjusted such that the fol-
lowing holds:

kgﬂax

> ALk = PYEQ). (16)

fe=/emin
i

4. SIMULATION RESULTS

We compare the performance of an MWF that operates using the pro-
posed method against one that uses the ML estimation scheme (6)—
(7) both with synthetic and realistic noises. For synthetic noise, we
create stationary Gaussian speech-shaped noise (SSN) by modelling
the long-term spectrum of the target speech using an LPC model of
order 15. The SSN is then convolved with a set of head-related trans-
fer functions (HRTF) measured in a setup, where a dummy head is
located at the center of a circular array of 48 loudspeakers with an
angular resolution of 7.5 degrees, and a hearing aid with M = 2
microphones is placed on the left ear. As for the realistic noise, we
use sound recordings in two realistic scenes using a spherical array
of 32 microphones: one in Oticon’s cafeteria during the lunch hours
and the other inside the cabin of a car driving steadily on a highway.
The recorded sound field is then recreated in a room using three cir-
cular uniform arrays of loudspeakers at elevations of -45, 0 and 45
degrees with respect to a dummy head placed at the center, and con-
sisting of 6, 16 and 6 loudspeakers, respectively. The HRTFs from
each loudspeaker to each of the M = 2 microphones of a hearing
aid placed on the left ear of the dummy head are measured and used
in the simulations. The target speech is assumed to be frontal, and
is randomly selected from the TIMIT test set [21] prepended with
a silence interval of duration 0.2 seconds during which I'(k, ly) is
estimated. In all simulations, we set D = 5 and Gpin = —7 dB,
where Gmin is the minimum gain for the single-channel postfilter.



The proposed method is implemented in octave bands with the up-
per frequency limits of 0.25, 0.5, 1, 2, 4 and 10 kHz. The SNR at
the reference microphone is varied from -12 to +24 dB with a 6 dB
stepsize. At each SNR, 25 speakers are randomly chosen from the
dataset and one sentence is randomly picked from each speaker to
perform one independent trial.

We use three objective measures to compare the two methods:
Perceptual Evaluation of Sound Quality (PESQ) [22], Segmental
SNR, and the Short-Time Objective Intelligibility (STOI) [23]. The
improvements gained by the proposed method over the ML estima-
tion method are shown in Fig. 2 for various frame sizes L. The
corresponding absolute scores for the ML method for L = 256 and
cafeteria noise are summarized in Table 1 for reference. As the plots
suggest, in a range of SNRs that are of most interest for noise reduc-
tion systems, the performance is improved by the proposed method
in sense of PESQ and Segmental SNR. In sense of estimated intel-
ligibility, the difference in the STOI scores is mostly insignificant.
Thus it is reasonable to say the improvements in speech quality are
obtained without compromising the intelligibility.

5. CONCLUSIONS

We addressed the problem of negative components in the estimated
speech spectrum, when using ML estimation in a Multichannel
Wiener Filter context. We proposed a new formulation, which mod-
ifies the ML approach by making sure that the estimated speech
power is not biased due to negative components. We solved the new
problem and obtained a water filling type of solution. We compared
the proposed method with the ML method in both synthetic and real-
istic environments using objective measures. The proposed method
improves the performance in sense of PESQ and segmental SNR in
arange of SNRs that are of practical significance, while in terms of
estimated intelligibility (STOI) the performance remains unchanged
or changes by insignificant amounts.

6. APPENDIX

The unconstrained version of (12) (the ML estimation) can be solved
for A, (k, 1) without entanglement with A¢(k, 1) [19]. The solution is
given in (6). Since the constraint in (12) does not depend on A\, (k, 1),
the same approach will solve (12) for A, (k, 1), yielding the same
solution. In the sequel, we substitute this solution in (12) and solve
the resultant problem for As(k, ). We make use of the following
identities [24]: (a) OIn|A| = tr (A~"OA), where tr(-) is the trace
operator, (b) otr (A) = tr (0A), (c) tr (ABC) = tr (CAB), and
(d) a‘g;l = —A’I%—‘:‘A’l, where x is a real scalar.

Disregarding the nonnegativity constraint in (12) for now, we
write it in Lagrangian form (with the Lagrange multiplier ) and set
its derivative w.r.t. As(k, ) equal to zero to obtain:

0 —1
W) —DlIn|Calk, )| — J ;:1( () S (k)X (K, )| —y=0.

a7

We apply the Matrix Inversion Lemma [25] to (3) to obtain:
C.l (k1) = #
AME (k, l)

As(k'v l) r (k, lo)d(k, l)dH(]C7 l)r—l(k’ lo)
MM, 1) + a(k, D) As (K, 1) ) , (18)

(k0

where

A qH, -1 1
= F =

(b DA 0D = G 5T tgw )

where the last equality in (19) follows from (9). Using (18), identi-

ties (a)—(c) and (3), we have:

19)

1
)\]\/[L(k l)

s (e, )T 7Yk, Lo)d (k, d™ (e, )T 72k, Lo)
N, )+ a(k, DA, ) )BCZ(’“’ l)}
1

=N D Gl =

1 Ak, )d” (6, )T 'k, lo) (OCalk, ) T'(k, lo)d (&, )
N (K, 1) NI, ) + a(k, D) As (k, 1)
1

d" (e, )Tk, Lo)d (k, DONS (k, ) —

OIn|Cufk, )| = tr (C; 'k, DOCalk, 1)) =

trKrl(k:, lo)—

9 [tr (T7'(k, o)

)\ML(;€7 )
Aolk,) (06,00, Lo)d kD) O (k. )
)‘%L(kvl) )\IXIL(Iﬁl) +a(k'7l)kg(k7l)
_ a(k, 1)
XYL, ) + a(k, DAs (e, D)
Applying identity (d) and then using (3), we have:
0 Hy s olg 0C;\(k, j)
78As(k,l)x (k, HCo (k, 5) Xk, 5) = 0] Xk, j)
= X"k, )C 'k, Hd(k, A" (k,)CIk, Xk, 5). (1)
Substituting (18) in (21) and simplifying the result yields:
d Hy, ool
mx (k, ) Cs &, )Xk, )
_ MR DT 10X )X JT T A
(AIXIL(k,l) +a(k>l))‘é(k7l))2 .
Substituting (22) and (20) in (17) and using (8), we obtain:
) a(k, .
>\11\14L(’I€7 l) + a(k7 Z)As(k7 l)
dH(ka l)I‘il(kv lo)éz(k, l)ril(kv l())d(k, l) 0 0 (23)
(N2, D + alk, DAs () D

Rearranging the terms in (23), we rewrite it as follows:

AP, DT 7k, 1)) Co (k, HT Yk, Lo)d (&, ) 7)\JXIL(k,l)+a(k,l))\s(k,l)

ONs(k, ). (20)

X, )5y

a(k, 1) a(k, D)
v (X )+ ak, DA D\
) ( a(k, 1) ) -0 o

Combining (19) and (7), we have Xk, ) + a(k, )XYk, ) =
a(k,1)C(k, ). Using this and (7), we rewrite (24) as the following
second order polynomial equation:

(ol D= X"k, 0) +
Solving (25) for As(k, ]) and discarding the unfeasible root yields:

4¢(k, 1) 541 —
21 ) (26)

Defining 11 £ 2 and applying the (-)™ operator to (26) to take ac-
count of the nonnegativity constraint in (12) gives (13). This together
with the power constraint in (12) yield the water-filling solution.

((k D4+ Aulle, ) — NGk, l)) —0. (25

A: (kv l) = <)‘1:[L(k’ l)*(:(k, l)+
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