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ABSTRACT

As one of the major sources in speech variability, accents have posed
a grand challenge to the robustness of speech recognition systems.
In this paper, our goal is to build a unified end-to-end speech recog-
nition system that generalizes well across accents. For this pur-
pose, we propose a novel pre-training framework AIPNet based on
generative adversarial nets (GAN) for accent-invariant representa-
tion learning: Accent Invariant Pre-training Networks. We pre-train
AIPNet to disentangle accent-invariant and accent-specific charac-
teristics from acoustic features through adversarial training on ac-
cented data for which transcriptions are not necessarily available.
We further fine-tune AIPNet by connecting the accent-invariant
module with an attention-based encoder-decoder model for multi-
accent speech recognition. In the experiments, our approach is com-
pared against four baselines including both accent-dependent and
accent-independent models. Experimental results on 9 English ac-
cents show that the proposed approach outperforms all the baselines
by 2.3 ∼ 4.5% relative reduction on average WER when transcrip-
tions are available in all accents and by 1.6 ∼ 6.1% relative reduc-
tion when transcriptions are only available in US accent.

Index Terms— Generative adversarial network, end-to-end
speech recognition, accent-invariance

1. INTRODUCTION

Accents are defined as variations in pronunciation within a language
and are often peculiar to geographical regions, individuals, social
groups, etc. As one of the major sources in speech variability, ac-
cents have posed a grand technical challenge to the robustness of
ASR systems. Due to the acoustic discrepancy among accents, an
ASR system that is trained on the speech data of one accent (e.g.,
native) often fails to recognize speech of another unseen accent (e.g.,
non-native). In this work, we focus on learning accent-invariant rep-
resentations, aiming to build a universal ASR system that is general-
izable across accents.

There is an extensive literature on multi-accent modeling for
speech recognition [1] [2]. The existing approaches can be cate-
gorized into two classes in general: accent-independent and accent-
dependent. Accent-independent modeling focuses on building a uni-
versal model that generalizes well across accents. One popular base-
line is to train a model on all the data of different accents [3] [4] [5].
Elfeky et al. have attempted to build a unified multi-accent recog-
nizer from a pre-defined unified set of CD states by learning from
the ensemble of accent-specific models [3]. Yang et al. have pro-
posed to jointly model ASR acoustic model and accent identifica-
tion classifier through multi-task learning [6]. Accent-dependent ap-
proaches either take accent-related information, such as accent em-
bedding or i-vectors, as an complementary input in the modeling or

adapt a unified model on accent-specific data [7] [8] [9] [10] [11].
Accent-dependent models usually outperform the unified ones with
known accent labels or on an accent-specific dataset, while accent-
independent models demonstrate better generalizability on average
when accent labels are unavailable during testing.

Generative adversarial nets (GAN) [12] or gradient reverse tech-
nique [13] has gained popularity in learning a representation that is
invariant to domains or conditions [14] [15] [16] [17]. Serdyuk et
al. have applied adversarial training to generate noise-invariant rep-
resentations for speech recognition [15]. Gradient reversal training
has recently been used for learning domain-invariant features to alle-
viate the mismatch between accents during training [16]. Bousmalis
et al. have proposed to a GAN-based pixel-level transformation from
one domain to the other and have shown great improvement over
state-of-the-art on a number of domain adaptation tasks [17].

This work focuses on learning accent-invariance with the goal
of building a unified accent-independent system for end-to-end
speech recognition. Pre-training has shown its superiority in many
computer vision and NLP tasks [18] [19] [20], while research ef-
forts on accent model pre-training thus far have been limited. We
propose a novel pre-training framework AIPNet based on GAN
for accent-invariant representation learning: Accent Invariant Pre-
training Networks. Unlike most of the existing work that unites the
modeling of acoustics and accents in a single stage, our approach
decouples accent modeling from acoustic modeling and consists of
two stages: pre-training and fine-tuning. In the pre-training stage,
AIPNet is built through adversarial training to disentangle accent-
invariant and accent-specific characteristics from acoustic features.
As transcriptions are not needed in pre-training, AIPNet allows
us to make use of many possible accent resources for which tran-
scriptions are unavailable. In the fine-tuning stage, we adopt an
attention-based encoder-decoder model for sequence-to-sequence
speech recognition. Specifically, we plug in the accent-invariant
embeddings in AIPNet into ASR model for further optimization.
Experimental results on 9 English accents show significant WER
reduction compared to four popular baselines, indicating the effec-
tiveness of AIPNet on accent-invariance modeling. As a general
framework for learning domain-invariance, AIPNet can be easily
generalized to model any variabilities, such as speakers or speech
noise, in addition to accents.

2. AIPNET

In this section we describe AIPNet in details. Our approach con-
sists of two stages: pre-training and fine-tuning. In the pre-training
stage, the model is built through adversarial training with the goal of
learning accent-invariant representations. In the fine-tuning stage,
we stack the pre-trained model with downstream tasks for further
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Fig. 1: The framework of AIPNet including both pre-training and
fine-tuning stages.

optimization. In this work, we use end-to-end ASR as a downstream
application, focusing on improving accent robustness for speech
recognition. The framework of AIPNet is illustrated in Fig. 1.

Suppose the input is an utterance X = (x1,x2, ...,xT ), where
xt represents the feature vector at time step t. The speaker accent
corresponding to xt is denoted as at ∈ {1, 2, ..., C}, where C is the
number of accents in the training data.

2.1. Accent-Invariance Pre-training

The goal of pre-training is to learn accent-invariant representa-
tions from accented training data. We define three types of losses
for this purpose, including adversarial loss to disentangle accent-
invariant and accent-specific information, reconstruction loss to
enforce acoustic characteristics to be preserved in the disentan-
gled representations, as well as consistency regularization to detach
linguistic information from accent-specific representations.

2.1.1. Adversarial Loss

To learn accent-invariant representations, we define two mappings
from speech data: accent-invariant generator GAI(xt) and accent-
specific generator GAS(xt). We also define two discriminators
DAI(GAI) and DAS(GAS) that output probabilities of accents to
ensure that GAI and GAS encode the corresponding information.
Specifically, we train DAI and DAS to maximize the probability
of assigning correct accent labels to samples from GAI and GAS

respectively, i.e., minimizing cross-entropy loss LAI
CE and LAS

CE :

min
DAS ,GAS

LAS
CE =

T∑
t=1

− logP (at|GAS(xt)), (1)

min
DAI

LAI
CE =

T∑
t=1

− logP (at|GAI(xt)). (2)

To decouple accent-related information from GAI , we simultane-
ously train GAI such that DAI is confused about accent labels of
samples from GAI . The objective is to maximize cross-entropy loss
LAI

CE , equivalent to minimize the negative cross-entropy:

min
GAI

−LAI
CE =

T∑
t=1

logP (at|GAI(xt)). (3)

2.1.2. Reconstruction Loss

The adversarial loss defined between DAI and GAI enforces that
accent-specific information is disentangled from GAI but preserved
inGAS . To ensure acoustics characteristics are encoded in the repre-
sentations from both generators, we further define a decoder with au-
toencoding structure to reconstruct speech feature xt from GAI(xt)
and GAS(xt). The decoder is trained by minimizing the reconstruc-
tion error LR:

min
decoder,GAI ,GAS

LR =

T∑
t=1

‖ x′t − xt ‖22 . (4)

2.1.3. Consistency Regularization

Accent-specific attributes are generally stable within an utterance
while linguistic-related acoustics have larger intra-utterance vari-
ance across time frames. Inspired by the utterance-level stability of
accent-specific attributes, we impose a consistency regularization
for GAS(xt) such that accent-specific representations from GAS

are consistent across time frames within an utterance:

min
GAS

LCR =

T−1∑
t=1

‖ GAS(xt+1)−GAS(xt) ‖22 . (5)

This regularization reinforces the preservation of accent-specific in-
formation in GAS meanwhile implicitly encourages linguistic con-
tent to be disentangled from GAS . The multi-scale nature of infor-
mation in speech data has also been applied in voice conversion and
speech denoising [21].

2.1.4. Iterative Training

Given the minmax two-player game between DAI and GAI ,
AIPNet pre-training is designed of repeating the following two
steps in an iterative manner.

• Update the discriminator DAI by minimizing LD ,

• Freeze the discriminator DAI and update the rest of the net-
work by minimizing LG,

LD = LAI
CE , (6)

LG = −LAI
CE + λ1L

AS
CE + λ2LR + λ3LCR, (7)

where λs are hyper-parameters.

2.2. Fine-tuning for End-to-End Speech Recognition

In the fine-tuning stage, the outputs of GAI which encode accent-
invariant linguistic content can be plugged in as inputs of any down-
stream speech tasks that aim to improve accent robustness, as shown
in Fig. 1. In this work, we focus on multi-accent speech recognition
and adopt Listen, attend and spell (LAS), a popular attention-based
encoder-decoder model [22] for sequence-to-sequence speech recog-
nition. LAS consists of an encoder encoding an input sequence into
high-level representations as well as an attention-based decoder gen-
erating a sequence of labels from the encoded representations. The
encoder is typically a unidirectional or bidirectional LSTM and the
decoder is a unidirectional LSTM.

The label inventory for LAS modeling consists of 200 word
pieces and is further augmented with two special symbols <sos>
and <eos> indicating the start of a sentence and the end of a sen-
tence respectively. LAS models the posterior probability of a label



Table 1: WER (%) of different approaches in each accent in supervised setting. F1 indicates fine-tuning with LASR; F2 indicates fine-tuning
with L′G; AI indicates accent-independent model; AD indicates accent-dependent model.

Approach Ave. US Non-US CA FR IN KR PH LA GB VN

Baselines

B1 AI 8.7 5.7 9.0 6.4 8.4 11.2 9.9 7.2 7.8 8.0 13.0
B2 AI 8.8 5.0 9.1 6.6 9.3 11.0 10.3 6.7 8.1 8.1 12.9
B3 AD 8.6 5.4 8.9 6.7 8.5 10.9 10.0 6.8 8.6 7.9 12.0
B4 AI 8.8 5.8 9.1 6.1 8.5 11.7 10.7 7.4 8.4 7.8 12.0

AIPNet
F1 AI 8.4 5.6 8.7 6.0 8.1 9.9 10.3 6.9 8.0 7.8 12.4
F2 AI 10.1 6.2 10.5 7.9 10.1 12.8 12.1 8.2 9.5 9.4 13.9

Table 2: WER (%) of different approaches in each accent in semi-supervised setting. F1 indicates fine-tuning with LASR; F2 indicates
fine-tuning with L′G; PL indicates pseudo labeling; AI indicates accent-independent model; AD indicates accent-dependent model.

Approach Ave. US Non-US CA FR IN KR PH LA GB VN

w/o PL Baseline B1 AI 29.9 10.6 31.8 22.0 33.1 41.0 33.1 28.2 28.7 28.3 40.6
AIPNet F1 AI 27.9 9.4 29.8 20.1 30.8 39.0 32.8 25.5 26.4 25.3 39.2

w/ PL Baselines

B1 AI 26.2 10.3 27.8 18.6 28.3 36.1 29.6 24.8 25.1 24.4 35.8
B2 AI 25.9 9.4 27.6 19.0 27.7 36.5 29.6 24.2 23.8 25.1 34.9
B3 AD 25.9 9.6 27.5 19.5 28.0 36.4 29.1 23.7 24.2 24.8 35.0
B4 AI 25.0 9.7 26.5 18.1 26.7 34.9 28.3 23.7 23.4 23.7 33.6

w/ PL AIPNet
F1 AI 25.7 12.1 27.0 19.7 27.4 34.7 28.9 23.0 23.6 24.5 34.6
F2 AI 24.6 11.8 25.9 19.0 26.0 32.6 28.0 22.2 22.8 23.1 33.5

sequence y given the input feature sequence GAI(X) and the previ-
ous label history y1:j−1:

P (y|GAI(X)) =
∏
j=1

P (yj |GAI(X),y1:j−1). (8)

Both encoder and decoder can be trained jointly for speech recogni-
tion by maximizing the log probability or minimizing LASR:

LASR =
∑
j=1

− logP (yj |GAI(X),y1:j−1). (9)

There are two ways of fine-tuning: 1) fine-tune GAI and LAS with
LASR. This requires only transcriptions in the training data; 2)
continue with adversarial training as described in Sec 2.1.4 with
L′G = LG + λ4LASR. This requires both transcriptions and ac-
cent labels in the training data. In the experiments, we report results
of using both ways.

3. EXPERIMENTS

3.1. Dataset

The dataset used in experiments contains utterances in a variety of
domains, such as weather or music, collected through crowdsourced
workers. There are 9 English accents in total in the dataset, including
United States (US), Korea (KR), Philippines (PH), Canada (CA),
India (IN), France (FR), Britain (GB), Vietnam (VN) and Latin
America (LA). The training set contains 4M (3.8K hours) utterances
among which 1% is split as validation data. Particularly, there are
1M and 780K utterances in US and LA respectively and about 330K
data in each of the remaining accents. The testing set has 10.8K
utterances with 1.2K utterances in each accent. In both training
and testing sets, we extract acoustic features using 80-dimensional
log Mel-filterbank energies that are computed over a 25ms window
every 10ms.

3.2. Experimental Setup

The architecture of each module in AIPNet is a multi-layer LSTM.
Specifically, we represent GAI , GAS and decoder using 2 LSTM
layers with a hidden size of 768, 256 and 1024 respectively. DAI

and DAS are represented by a LSTM layer with softmax outputs.
The configuration of LAS includes a 4-layer LSTM encoder and a
2-layer LSTM decoder, each with a hidden size of 1024. The hy-
perparameters (λ1, λ2, λ3, λ4) are swept within the range [0.1, 30].
Our experiments have shown that the final results are generally sta-
ble across different hyperparameter settings. For simplicity, we re-
port results with (λ1, λ2, λ3, λ4) = (1, 10, 10, 10) in this paper. We
use batch size of 16, 000 tokens with 32 GPUs for training. We use
Adam with learning rate of 5×10−4 in pre-training and 2.5×10−4 in
fine-tuning, β1 = 0.9, β2 = 0.999. A dropout rate of 0.1 is applied
to all the layers. We pre-train AIPNet for 15 epochs and fine-tune
LAS for 20 epochs. During inference, speech features are fed into
GAI that is absorbed as part of LAS encoder and outputs of LAS are
decoded using beam size of 20 without any external language model.

3.3. Baselines

We compare our approach against four popular baselines B1-B4 for
multi-accent speech recognition in the experiments. B1 is an accent-
independent model which is trained on the data from all the accents.
B2 and B3 have shown strong performance on multi-accent speech
recognition in [7]. Specifically, we append accent labels at the end of
each label sequence and B2 is trained on the updated sequences from
all accents. As accent information is not required at inference, B2 is
accent-independent. When training B3 which is accent-dependent,
we transform accent 1-hot vector into an embedding through a learn-
able linear matrix and feed the learned embedding into LAS encoder.
During B1-B3 training, GAI is part of LAS encoder containing 6
LSTM layers (see Section 3.2). B4 is the most similar to our ap-



(a) GAI embedding from B1. (b) GAI embedding from F2.

Fig. 2: t-SNE 2-D plots of GAI embedding from B1 and F2 (w/ PL)
in each accent. Each color represents each accent.

proach in spirits, aiming to learn accent-invariant features through
gradient reversal [16]. The gradient reversal approach keeps mod-
ules of GAI , DAI and ASR model in Fig. 1. Instead of using it-
erative training in Section 2.1.4, we add a gradient reversal layer
between GAI and DAI to reverse the backpropagated gradient for
GAI training. For more details about B4, we refer readers to [16].

3.4. Experimental Results

As described in Section 2, AIPNet pre-training requires only ac-
cent labels in the training data. This approach hence becomes espe-
cially useful when there is a large number of accented data without
available transcriptions. We design experiments in two settings, i.e.,
supervised setting where transcriptions are available in all accents
and semi-supervised setting where transcriptions are available only
in US accent.

3.4.1. Results in Supervised Setting

Table 1 summarizes the results of different approaches in supervised
setting. In our approach, we report results of fine-tuning GAI and
LAS with LASR using transcriptions (F1), as well as those of fine-
tuning the entire network with L′G using both transcriptions and ac-
cent labels (F2). We can see that fine-tuning with LASR (F1) out-
performs the baselines by 2.3 ∼ 4.5% relative reduction on average
WER. Compared to all the baselines, F1 has achieved improvement
in CA, FR, GB, and especially IN (9.1 ∼ 15.3% reduction) but has
shown a mediocre performance in each of the remaining accents.

3.4.2. Results in Semi-supervised Setting

In semi-supervised setting where transcriptions are available only in
US accent, we compare the performance between B1 and F1. The
results are presented in the first two rows of Table 2. As B2, B3, B4
and F2 require the availability of pairs of transcriptions and accent
labels for training, the results of these approaches are not available
in such scenario. The results have shown that our approach sig-
nificantly outperforms the baseline model in all accents, achieving
3.4 ∼ 11.3% relative WER reduction.

One popular and effective method for semi-supervised learning
is to generate target pseudo labels for unlabeled data using an ini-
tial model [23]. To achieve better performance, we generate pseudo
transcriptions for non-US training data using the US model. As a
result, we are able to follow all the experiments in supervised set-
ting in Section 3.4.1. The results with pseudo labeling (PL) are
presented in the last six rows of Table 2. By comparing the per-
formance between models with and without pseudo labeling, we can
observe that pseudo labeling has shown significant gains for all the

Fig. 3: Word piece validation accuracy of ASR model in B1 and F2.

approaches and almost in each accent, exhibiting its effectiveness
on improving generalization performance using unlabeled data. In
the scenario with pseudo labeling, fine-tuning with L′G (F2) outper-
forms the baselines by 1.6 ∼ 6.1% relative reduction on average
WER and consistently achieves the best performance in all non-US
accents except for CA.

3.5. Analysis

In this section, we analyze the properties of AIPNet to better un-
derstand its superiority for multi-accent speech recognition. Without
loss of generality, we use B1 and F2 (w/ PL) in semi-supervised set-
ting in the analysis.

Learning accent-invariance To comprehend the effectiveness
of AIPNet on learning accent-invariant representations, we extract
embedding (outputs) of GAI from B1 and F2 respectively for 300
data samples in each accent. Fig. 2 shows t-SNE 2-D visualization of
GAI embedding from B1 (Fig. 2a) and F2 (Fig. 2b) respectively for
each accent [24]. As can be seen, GAI outputs from the baseline B1
tend to be clustered in each accent while those from our approach F2
are mixed across different accents. The visualization demonstrates
the validity of the accent-invariant features learned through AIPNet
and further explains the better generalization performance that our
approach has achieved across accents.

Reducing overfitting We further investigate the trend of word
piece validation accuracy of the ASR model in B1 and F2, as shown
in Fig. 3. Compared to B1, F2 learns more slowly and reaches a
better local optimal. The learning objective of F2 consists of both
LASR and accent-related regularizers (see Section 2). This obser-
vation corroborates the effectiveness of the regularization in our ap-
proach on reducing the risk of overfitting. It is worth noting that such
benefit from the accent-related regularization in fine-tuning is not
observed in supervised setting (see Table 1). The sufficient training
data with high-quality transcriptions in supervised setting empowers
the learning capability of the ASR model. As a result, the additional
regularization might even weaken such learning capability.

4. CONCLUSION

In this paper, we proposed AIPNet, a GAN-based pre-training net-
work, for learning accent-invariant representations, aiming to build
a unified speech recognition system that generalizes well across ac-
cents. As transcriptions are not needed in pre-training, AIPNet pro-
vides the flexibility of making use of many possible accent resources
for which transcriptions are unavailable. Experiments have shown
promising results on 9 English accents compared to the baselines,
especially in the case when transcriptions are not available in all ac-
cents. Experimental results have demonstrated the effectiveness of
AIPNet on learning accent-invariance.
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